![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Energy technology & engineering > Nuclear power & engineering
Nuclear Safeguards, Security and Nonproliferation: Achieving Security with Technology and Policy, Second Edition is a comprehensive reference covering the cutting-edge technologies used to trace, track and safeguard nuclear material. Sections cover security, the illicit trafficking of nuclear materials, improvised nuclear devices, and how to prevent nuclear terrorism. International case studies of security at nuclear facilities and illegal nuclear trade activities provide specific examples of the complex issues surrounding the technology and policy for nuclear material protection, control and accountability. New case studies include analyses of nuclear programs of important countries, such as North Korea, Iran, and Kazakhstan, among others. This is a thoroughly updated, must-have volume for private and public organizations involved in driving national security, domestic and international policy issues relating to nuclear material security, non-proliferation, and nuclear transparency.
Japan's Quest for Nuclear Energy and the Price it has Paid: Accidents, Consequences, and Lessons Learned for the Global Nuclear Industry identifies major accidents in Japan that have happened at different stages of the nuclear fuel cycle in Japan, assesses the underlying causes of nuclear accidents, and identifies other systemic problems in the nuclear industry. It provides recommendations on how government, industry and academic institutions can work together toward achieving a zero-accident safety culture.
This books explains a strategy that a country can meet its CO2 emission reduction targets (e.g., as are in Paris Agreement) with a dominant share of nuclear power with a balanced energy supply mix. The book starts with an introduction to the subject of energy policy, mechanisms, and CO2 emissions, and the complexity of the CO2 reduction goal. It introduces the system dynamics approach as a solution modeling approach for dealing with the complexity of CO2 reducing policies and mechanisms. The book presents the dynamic model and its key parameters and then elaborates the structural and behavioral validity of the dynamic model. The book gives an intensive review to do that comparative analysis involving China, India, Saudi Arabia, UAE, and Pakistan. The last half of the book focuses on the case in Pakistan. The author reviews Pakistan's Intended Nationally Determined Contribution and other key sources from Pakistan's Ministry of Energy and related institutions. Using Pakistan's case data, the author applies the system dynamics modeling approach whereby a dynamic model, capable of representing the important interactions among various sectors of the electricity supply sector of Pakistan. This book is intended to be of use to policymakers, managers and practitioners, teachers, researchers, and students of design and assessment of policymaking for the complex, dynamic energy systems
This book examines the discursive formation of nuclear power in Japan to provide insights into the ways this technology has been both promoted and resisted, constituting and being constituted by Japan's sociocultural landscape. Each chapter pays close attention to a particular discursive site, including newspaper editorials, public relations campaigns, local site fights, urban antinuclear activism, and post-Fukushima pronuclear and antinuclear articulations. The book also raises the question of democracy and sustainability through the examination of nuclear power discourses. It demonstrates the power of discourse in shaping nuclear power by creating knowledge, influencing decisions, relationships, identity, and community. Readers will gain a range of insights from the book: prominent articulations on nuclear power discourse, state and corporate strategies for enticing consent for controversial facilities and technologies, the power of the media in framing public knowledge, the role of social movements and activisms in civic society, the power of community, and nuclear power as a problematic in representative democracy and sustainability. This book will appeal to students and scholars interested in social discourse, social movements, Japanese society, cultural studies, environmental communication, media analysis, energy and sustainability, and democracy, among others.
Thermal Hydraulics Aspects of Liquid Metal cooled Nuclear Reactors is a comprehensive collection of liquid metal thermal hydraulics research and development for nuclear liquid metal reactor applications. A deliverable of the SESAME H2020 project, this book is written by top European experts who discuss topics of note that are supplemented by an international contribution from U.S. partners within the framework of the NEAMS program under the U.S. DOE. This book is a convenient source for students, professionals and academics interested in liquid metal thermal hydraulics in nuclear applications. In addition, it will also help newcomers become familiar with current techniques and knowledge.
This book reviews the active faults around nuclear power plants in Japan and recommends an optimal method of nuclear power regulation controlled by the Nuclear Regulation Authority of Japan. The active faults around nuclear power plants have been underestimated in Japan since the latter half of the 20th century. However, based on the lessons learned from the Fukushima nuclear power plant accident, the book sheds light on why the risks of active faults were underestimated, and discusses the optimal scientific method of assessing those risks. Further, the author shares his experiences in the new standard for nuclear regulation creation team and in the active fault survey at the Nuclear Regulation Authority of Japan. This book is a valuable resource for students, researchers, academic and policy-makers, as well as non-experts interested in nuclear safety.
Storage and Hybridization of Nuclear Energy: Techno-economic Integration of Renewable and Nuclear Energy provides a unique analysis of the storage and hybridization of nuclear and renewable energy. Editor Bindra and his team of expert contributors present various global methodologies to obtain the techno-economic feasibility of the integration of storage or hybrid cycles in nuclear power plants. Aimed at those studying, researching and working in the nuclear engineering field, this book offers nuclear reactor technology vendors, nuclear utilities workers and regulatory commissioners a very unique resource on how to access reliable, flexible and clean energy from variable-generation.
Nuclear Energy: An Introduction to the Concepts, Systems, and Applications of Nuclear Processes, Eighth Edition, provides essential information on basic nuclear physics, systems and the applications of nuclear energy. It comprehensively covers Basic Concepts, Radiation and Its Uses, and Nuclear Power, providing students with a broad view of nuclear energy and science in a fast-paced format that features updated, timely content on topics of new and growing importance to current and future nuclear professionals, such as tritium-powered betavoltaic integrated circuit chips, the modulation of radioactive decay constant due to solar activity, Monte Carlo radiation transport calculations and accelerator-driven systems. This book is an essential resource for any first course on nuclear energy and systems.
The pursuit of nuclear fusion as an energy source requires a broad knowledge of several disciplines. These include plasma physics, atomic physics, electromagnetics, materials science, computational modeling, superconducting magnet technology, accelerators, lasers, and health physics. Nuclear Fusion distills and combines these disparate subjects to create a concise and coherent foundation to both fusion science and technology. It examines all aspects of physics and technology underlying the major magnetic and inertial confinement approaches to developing nuclear fusion energy. It further chronicles latest developments in the field, and reflects the multi-faceted nature of fusion research, preparing advanced undergraduate and graduate students in physics and engineering to launch into successful and diverse fusion-related research. Nuclear Fusion reflects Dr. Morse's research in both magnetic and inertial confinement fusion, working with the world's top laboratories, and embodies his extensive thirty-five year career in teaching three courses in fusion plasma physics and fusion technology at University of California, Berkeley.
With the dissolution of the Soviet Union the nuclear threats facing the world are constantly evolving and have grown more complex since the end of the Cold War. The diversion of complete weapon systems or nuclear material to rogue nations and terrorist organizations has increased. The events of the past years have proved the necessity to reevaluate these threats on a level never before considered. In recognition that no single country possesses all of the answers to the critical scientific, institutional and legal questions associated with combating nuclear and radiological terrorism, the NATO Advanced Research Workshop on "Preparedness for Nuclear and Radiological Threats" and this proceeding was structured to promote wide-ranging, multi-national exploration of critical technology needs and underlying scientific challenges to reducing the threat of nuclear/radiological terrorism; to illustrate through country-specific presentations how resulting technologies were used in national programs; and to outline the role of legal, policy and institutional frameworks in countering nuclear/ radiological terrorism. One key outcome of this book is better understanding of the interdependent contributions from across the international community of the scientific and technological components and the legal, policy and institutional components to combating nuclear and radiological threats.
This book highlights a comprehensive and detailed introduction to the fundamental principles related to nuclear engineering. As one of the most popular choices of future energy, nuclear energy is of increasing demand globally. Due to the complexity of nuclear engineering, its research and development as well as safe operation of its facility requires a wide scope of knowledge, ranging from basic disciplines such as mathematics, physics, chemistry, and thermodynamics to applied subjects such as reactor theory and radiation protection. The book covers all necessary knowledge in an illustrative and readable style, with a sufficient amount of examples and exercises. It is an easy-to-read textbook for graduate students in nuclear engineering and a valuable handbook for nuclear facility operators, maintenance personnel and technical staff.
This book explores the myriad issues that play out in the upstream petroleum industry of Ghana from a legal perspective. Focusing on Ghana as an emerging petroleum country, Thomas Kojo Stephens begins by examining whether the existing constitutional framework will be effective in governing the expanding oil and gas sector. Drawing on various approaches proffered by other experts in the field, Stephens looks at possible institutional structures that could be put in place and juxtaposes these ideas with the experience of Ghana to test the efficacy of these proposals. He also explores the types of contractual frameworks currently implemented in Ghana for comparison with other emerging petroleum economies, examining the barriers to effectiveness, novel provisions that must be incorporated and lessons learned from other regions. Finally, the book highlights how vital it is for the Ghanaian State to monitor the use of petroleum revenue and make ethical investment decisions that prioritise the interests of Ghanaian citizens. Upstream Oil and Gas in Ghana will be of great interest to students and scholars of energy law and policy, oil and gas management and African Studies more broadly, as well as those working in the upstream petroleum industry.
This carefully researched book presents facts and arguments showing, beyond a doubt, that nuclear fusion power will not be technically feasible in time to satisfy the world's urgent need for climate-neutral energy. The author describes the 70-year history of nuclear fusion; the vain attempts to construct an energy-generating nuclear fusion power reactor, and shows that even in the most optimistic scenario nuclear fusion, in spite of the claims of its proponents, will not be able to make a sizable contribution to the energy mix in this century, whatever the outcome of ITER. This implies that fusion power will not be a factor in combating climate change, and that the race to save the climate with carbon-free energy will have been won or lost long before the first nuclear fusion power station comes on line. Aimed at the general public as well as those whose decisions directly affect energy policy, this book will be a valuable resource for informing future debates.
This open access book is a unique compilation of experimental benchmark analyses of the accelerator-driven system (ADS) at the Kyoto University Critical Assembly (KUCA) on the most recent advances in the development of computational methods. It is devoted especially to nuclear engineers and scientists. Readers will find a detailed description of advanced measurement techniques and calculation methodologies for the ADS with 14 MeV neutrons and high-energy neutrons (with combined use of 100 MeV protons and Pb-Bi target) at KUCA. Additionally, experimental results of nuclear transmutation of minor actinides by ADS and at a critical state are included. Readers also have access to benchmarks of specific ADS experiments with raw data in the Appendix. The book is a valuable resource for the ADS experiments at KUCA which are globally recognized as both static and kinetic studies from the point of view of fundamental research.
This open access book is a pedagogical, examples-based guide to using the Monte Carlo N-Particle (MCNP (R)) code for nuclear safeguards and non-proliferation applications. The MCNP code, general-purpose software for particle transport simulations, is widely used in the field of nuclear safeguards and non-proliferation for numerous applications including detector design and calibration, and the study of scenarios such as measurement of fresh and spent fuel. This book fills a gap in the existing MCNP software literature by teaching MCNP software usage through detailed examples that were selected based on both student feedback and the real-world experience of the nuclear safeguards group at Los Alamos National Laboratory. MCNP input and output files are explained, and the technical details used in MCNP input file preparation are linked to the MCNP code manual. Benefiting from the authors' decades of experience in MCNP simulation, this book is essential reading for students, academic researchers, and practitioners whose work in nuclear physics or nuclear engineering is related to non-proliferation or nuclear safeguards. Each chapter comes with downloadable input files for the user to easily reproduce the examples in the text.
Computational Nuclear Engineering and Radiological Science Using Python provides the necessary knowledge users need to embed more modern computing techniques into current practices, while also helping practitioners replace Fortran-based implementations with higher level languages. The book is especially unique in the market with its implementation of Python into nuclear engineering methods, seeking to do so by first teaching the basics of Python, then going through different techniques to solve systems of equations, and finally applying that knowledge to solve problems specific to nuclear engineering. Along with examples of code and end-of-chapter problems, the book is an asset to novice programmers in nuclear engineering and radiological sciences, teaching them how to analyze complex systems using modern computational techniques. For decades, the paradigm in engineering education, in particular, nuclear engineering, has been to teach Fortran along with numerical methods for solving engineering problems. This has been slowly changing as new codes have been written utilizing modern languages, such as Python, thus resulting in a greater need for the development of more modern computational skills and techniques in nuclear engineering.
This textbook provides a comprehensive introduction to the physics of laser-plasma interactions (LPI), based on a graduate course taught by the author. The emphasis is on high-energy-density physics (HEDP) and inertial confinement fusion (ICF), with a comprehensive description of the propagation, absorption, nonlinear effects and parametric instabilities of high energy lasers in plasmas. The recent demonstration of a burning plasma on the verge of nuclear fusion ignition at the National Ignition Facility in Livermore, California, has marked the beginning of a new era of ICF and fusion research. These new developments make LPI more relevant than ever, and the resulting influx of new scientists necessitates new pedagogical material on the subject. In contrast to the classical textbooks on LPI, this book provides a complete description of all wave-coupling instabilities in unmagnetized plasmas in the kinetic as well as fluid pictures, and includes a comprehensive description of the optical smoothing techniques used on high-power lasers and their impact on laser-plasma instabilities. It summarizes all the key developments from the 1970s to the present day in view of the current state of LPI and ICF research; it provides a derivation of the key LPI metrics and formulas from first principles, and connects the theory to experimental observables. With exercises and plenty of illustrations, this book is ideal as a textbook for a course on laser-plasma interactions or as a supplementary text for graduate introductory plasma physics course. Students and researchers will also find it to be an invaluable reference and self-study resource.
This book focuses on core design and methods for design and analysis. It is based on advances made in nuclear power utilization and computational methods over the past 40 years, covering core design of boiling water reactors and pressurized water reactors, as well as fast reactors and high-temperature gas-cooled reactors. The objectives of this book are to help graduate and advanced undergraduate students to understand core design and analysis, and to serve as a background reference for engineers actively working in light water reactors. Methodologies for core design and analysis, together with physical descriptions, are emphasized. The book also covers coupled thermal hydraulic core calculations, plant dynamics, and safety analysis, allowing readers to understand core design in relation to plant control and safety.
This volume constitutes the state-of-the-art in active interrogation, widely recognized as indispensable methods for addressing current and future nuclear security needs. Written by a leading group of science and technology experts, this comprehensive reference presents technologies and systems in the context of the fundamental physics challenges and practical requirements. It compares the features, limitations, technologies, and impact of passive and active measurement techniques; describes radiation sources for active interrogation including electron and ion accelerators, intense lasers, and radioisotope-based sources; and it describes radiation detectors used for active interrogation. Entire chapters are devoted to data acquisition and processing systems, modeling and simulation, data interpretation and algorithms, and a survey of working active measurement systems. Active Interrogation in Nuclear Security is structured to appeal to a range of audiences, including graduate students, active researchers in the field, and policy analysts. The first book devoted entirely to active interrogation Presents a focused review of the relevant physics Surveys available technology Analyzes scientific and technology trends Provides historical and policy context Igor Jovanovic is a Professor of Nuclear Engineering and Radiological Sciences at the University of Michigan and has previously also taught at Penn State University and Purdue University. He received his Ph.D. from University of California, Berkeley and worked as physicist at Lawrence Livermore National Laboratory. Dr. Jovanovic has made numerous contributions to the science and technology of radiation detection, as well as the radiation sources for use in active interrogation in nuclear security. He has taught numerous undergraduate and graduate courses in areas that include radiation detection, nuclear physics, and nuclear security. At University of Michigan Dr. Jovanovic is the director of Neutron Science Laboratory and is also associated with the Center for Ultrafast Optical Science. Anna Erickson is an Assistant Professor in the Nuclear and Radiological Engineering Program of the G.W. Woodruff School of Mechanical Engineering at Georgia Institute of Technology. Previously, she was a postdoctoral researcher in the Advanced Detectors Group at Lawrence Livermore National Laboratory. Dr. Erickson received her PhD from Massachusetts Institute of Technology with a focus on radiation detection for active interrogation applications. Her research interests focus on nuclear non-proliferation including antineutrino analysis and non-traditional detector design and characterization. She teaches courses in advanced experimental detection for reactor and nuclear nonproliferation applications, radiation dosimetry and fast reactor analysis.
Thermal Radiation: An Introduction is a complete textbook for a one-semester introductory graduate course on radiative energy transfer. It bridges the gap between a basic introduction and comprehensive coverage of thermal radiation, focusing on insight into radiative transfer as practiced by engineers. Covering radiative transfer among surfaces, with an introduction to the effects of participating media between surfaces, the book includes surface and medium property characteristics and solutions to the radiative transfer equation in simple geometries. * Tailored and organized specifically to suit a one-semester graduate course in radiative heat transfer. * Emphasis is placed on insight into radiative transfer as practiced by engineers. * Discusses how radiation is incorporated into finite element analysis (FEA) codes. The textbook is intended for instructors and graduate students in a first-year course on radiative heat transfer or advanced heat transfer. Supplementary resources for students and instructors are available online.
Practical Onshore Gas Field Engineering delivers the necessary framework to help engineers understand the needs of the reservoir, including sections on early transmission and during the life of the well. Written from a reservoir perspective, this reference includes methods and equipment from gas reservoirs, covering the gathering stage at the gas facility for transportation and processing. Loaded with real-world case studies and examples, the book offers a variety of different types of gas fields that demonstrate how surface systems can work through each scenario. Users will gain an increased understanding of today's gas system aspects, along with tactics on how to optimize bottom line revenue. As reservoir and production engineers face many challenges in getting gas from the reservoir to the final sales point, especially as a result of the shale boom, a new demand for more facility engineers now exists in the market. This book addresses new challenges in the market and brings new tactics to the forefront.
Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste, Second Edition, critically reviews state-of-the-art technologies and scientific methods relating to the implementation of the most effective approaches to the long-term, safe disposition of nuclear waste, also discussing regulatory developments and social engagement approaches as major themes. Chapters in Part One introduce the topic of geological disposal, providing an overview of near-surface, intermediate depth, and deep borehole disposal, spanning low-, medium- and high-level wastes. Part Two addresses the different types of repository systems - crystalline, clay, and salt, also discussing methods of site surveying and construction. The critical safety issue of engineered barrier systems is the focus of Part Three, with coverage ranging from nuclear waste canisters, to buffer and backfill materials. Lastly, Parts Four and Five focus on safety, security, and acceptability, concentrating on repository performance assessment, then radiation protection, environmental monitoring, and social engagement. Comprehensively revised, updated, and expanded with 25% new material on topics of current importance, this is the standard reference for all nuclear waste management and geological repository professionals and researchers.
Steam Generators for Nuclear Power Plants examines all phases of the lifecycle of nuclear steam generators (NSGs), components which are essential for the efficient and safe operation of light water reactors (LWRs). Coverage spans the design, manufacturing, operation and maintenance, fitness-for-service, and long-term operation of these key reactor parts. Part One opens with a chapter that provides fundamental background on NSG engineering and operational experiences. Following chapters review the different NSG concepts, describe NSG design and manufacturing, and consider the particularities of SGs for VVER reactors. Part Two focuses on NSG operation and maintenance, starting with an overview of the activities required to support reliable and safe operation. The discussion then moves on to tubing vibration, followed by the water and steam cycle chemistry issues relevant to the NSG lifecycle. Finally, a number of chapters focus on the key issue of corrosion in NSGs from different angles. This book serves as a timely resource for professionals involved in all phases of the NSG lifecycle, from design, manufacturing, operation and maintenance, to fitness-for-service and long-term operation. It is also intended as a valuable resource for students and researchers interested in a range of topics relating to NSG lifecycle management.
Thermal Hydraulics of Water-Cooled Nuclear Reactors reviews flow and heat transfer phenomena in nuclear systems and examines the critical contribution of this analysis to nuclear technology development. With a strong focus on system thermal hydraulics (SYS TH), the book provides a detailed, yet approachable, presentation of current approaches to reactor thermal hydraulic analysis, also considering the importance of this discipline for the design and operation of safe and efficient water-cooled and moderated reactors. Part One presents the background to nuclear thermal hydraulics, starting with a historical perspective, defining key terms, and considering thermal hydraulics requirements in nuclear technology. Part Two addresses the principles of thermodynamics and relevant target phenomena in nuclear systems. Next, the book focuses on nuclear thermal hydraulics modeling, covering the key areas of heat transfer and pressure drops, then moving on to an introduction to SYS TH and computational fluid dynamics codes. The final part of the book reviews the application of thermal hydraulics in nuclear technology, with chapters on V&V and uncertainty in SYS TH codes, the BEPU approach, and applications to new reactor design, plant lifetime extension, and accident analysis. This book is a valuable resource for academics, graduate students, and professionals studying the thermal hydraulic analysis of nuclear power plants and using SYS TH to demonstrate their safety and acceptability.
This book focuses on nuclear engineering education in the post-Fukushima era. It was edited by the organizers of the summer school held in August 2011 in University of California, Berkeley, as part of a collaborative program between the University of Tokyo and UC Berkeley. Motivated by the particular relevance and importance of social-scientific approaches to various crucial aspects of nuclear technology, special emphasis was placed on integrating nuclear science and engineering with social science. The book consists of the lectures given in 2011 summer school and additional chapters that cover developments in the past three years since the accident. It provides an arena for discussions to find and create a renewed platform for engineering practices, and thus nuclear engineering education, which are essential in the post-Fukushima era for nurturing nuclear engineers who need to be both technically competent and trusted in society. |
You may like...
Scientific Basis for Nuclear Waste…
Neil Hyatt, Kevin M. Fox, …
Hardcover
R1,993
Discovery Miles 19 930
Deep Geological Disposal of Radioactive…
W. R. Alexander, Linda McKinley
Hardcover
R3,451
Discovery Miles 34 510
Probabilistic Safety Assessment for…
Gennadij V. Arkadov, Alexander F. Getman, …
Hardcover
R4,311
Discovery Miles 43 110
Molten Salt Reactors and Thorium Energy
Thomas James Dolan, Imre Pazsit, …
Paperback
R7,166
Discovery Miles 71 660
Radioactive Waste Management and…
W. E Lee, Michael I. Ojovan, …
Hardcover
R6,711
Discovery Miles 67 110
|