Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Energy technology & engineering > Nuclear power & engineering
On March 11,2011, Japan experienced the largest earthquake in its history, causing massive property damage. This book summarizes and critically analyzes the natural events and human shortcomings responsible for the failure of the Fukushima reactors during the first year following the accident, and governmental and civilian responses to the emergency. It covers the plant's safety history, the tsunami and earthquake, and the implications of the events on the nuclear reactor industry.
Nuclear technology has been an organizing premise of the international system since 1945. Eight countries have officially acknowledged the possession of nuclear weapons. Many countries have harnessed the atom for electricity generation and other civilian uses. Roughly 440 commercial nuclear reactors operate in thirty countries providing 14 percent of the world's electricity. Volatile oil prices and concerns about climate change have led newly emerging economies in Asia to express keen interest in using nuclear energy to meet growing energy demands. Since the basic technological apparatus for both civilian and military nuclear programs is the same, there are concerns about the potential spread of dual-use technology. The future stability of the international order depends on the responsible management of their nuclear assets by nuclear powers. The relationship between civilian authorities and the military takes on special significance in states with nuclear weapons or near-weapon capability. The constitutional balance of powers, the delegation of authority during wartime and peace, influences from public opinion and bureaucratic structures on the formulation of doctrine, crisis management, and communications with the international media and the general public are influenced by civil-military relations and organizational culture. This volume will be of broad interest to scholars of civil-military relations, political science, and political sociology.
The rising demand for energy, the higher costs of oil and gas, and the association of fossil fuels with adverse climate change have all brought a renewed interest in nuclear energy. Nuclear power, however, is itself controversial, because of its costs, its environmental effects and the security risks it poses. This book discusses these critical issues surrounding nuclear power in relation to Asia. It discusses also the politics of nuclear power and the activities of civil society organisations concerned about nuclear issues. Throughout the book the perspectives are included of both proponents and opponents of nuclear power on the key controversial issues.
First published in 1989. The EFC, incorporated in Belgium, was founded in 1955 with the purpose of promoting European co-operation in the fields of research into corrosion and corrosion prevention. In 1986 the EFC Working Party on Nuclear Corrosion was reorganised with the objective of concentrating on nine topics of relevance to the nuclear power industry. The group of experts in the Working Party. The new structure of the Working Party is based on the following topics: - Pressurised Water Reactors - Boiling Water Reactors - Fuel Elements (Cladding) - Advanced Gas Reactors - High Temperature Reactors - Liquid Metal Fast Breeders - Fusion Reactors - Reprocessing - Waste Management (Disposal). The first meeting of the Working Party following the restructuring was on the occasion of EUROCORR '87 in Frankfurt. The present volume has therefore been prepared and represents Number One in the series of EFC publications.
Corrosion remains one of the key issues affecting the performance and availability of nuclear power plants. Therefore, reliable in-plant corrosion monitoring methods are essential both for the future operation of existing plants and to ensure the safety of future nuclear waste disposal systems. In two parts, this book was stimulated by a workshop organised by EFC Working Party 4 on Nuclear Corrosion and the European Cooperative Group on Corrosion Monitoring of Nuclear Materials (EGC-COMON). The first part deals mainly with research into the detection of stress corrosion crack initiation in nuclear power plant environments (essentially high temperature water at 300 ) by various methods, particularly the electrochemical noise technique but also including the electrochemical impedance, acoustic emission and direct current potential drop methods. The second part addresses the goal to develop in-situ techniques and includes examples of the application of electrochemical corrosion potential monitoring. This book will be of particular interest to scientists and engineers concerned with the mitigation of corrosion in nuclear power plants and the long-term storage of radioactive waste.
This book encompasses many different topics in the field of nuclear safety and answers the need for an accessible introductory text to complement industry guidance. It focuses on the principles and applications of nuclear safety, guiding the reader through the 'why' and the 'how' of constructing a nuclear safety case. The theory is enhanced by the provision of examples on how safety cases may tackle a particular problem. Each nuclear site licensee has its own way of undertaking nuclear safety although there is much common ground. The book adopts a consensus approach to the various methodologies used in the industry and armed with such knowledge, an individual should have a good grounding for the application of nuclear safety in the manner required for their industry. Introduction to Nuclear Safety describes why we pursue nuclear safety, including the legal, financial and moral reasons. The fundamental concept of reducing risks to as low as reasonably practicable in the nuclear industry is discussed and the safety case life-cycle from design to commissioning to operations and decommissioning is described. Typical safety case methodologies are also discussed. In considering the applications of nuclear safety, examples of how to undertake an assessment are given. Producing a safety case is not solely a theoretical exercise; it must be implemented and adopted for use within the plant. Therefore, the book describes how safety case documents can be utilised within the plant. The book assumes only a relatively basic knowledge of physics, engineering and mathematics but the interested reader can find more detailed texts in the bibliography.
This text addresses a number of technical skills in mathematics, physics, and specific areas of nuclear engineering that will prepare the student for optimum performance in any nuclear engineering or medical physics curriculum. The book opens with fundamentals in probability and statistics, ODEs, series solutions, general differential equations, numerical methods, up through PDEs, and incorporates modeling and simulation, radiation, heat transfer, neutron diffusion problems, advanced solution methods, and engineering problem solving. The book specifically focuses on examples in nuclear and radiological engineering, and is thus a unique text for nuclear engineering students. A course using the book may range from three to four credits. Several applications in Mathematica are written to illustrate technical concepts.
This text addresses a number of technical skills in mathematics, physics, and specific areas of nuclear engineering that will prepare the student for optimum performance in any nuclear engineering or medical physics curriculum. The book opens with fundamentals in probability and statistics, ODEs, series solutions, general differential equations, numerical methods, up through PDEs, and incorporates modeling and simulation, radiation, heat transfer, neutron diffusion problems, advanced solution methods, and engineering problem solving. The book specifically focuses on examples in nuclear and radiological engineering, and is thus a unique text for nuclear engineering students. A course using the book may range from three to four credits. Several applications in Mathematica are written to illustrate technical concepts.
Concerns over the planet's limited energy sources are not new. For the past half-century, scientists from around the world have explored substitutes for fossil fuels. Among them, developed nations have invested considerable resources in the development of nuclear fusion technology. Thus, in 1978, scientists and engineers from Europe, Japan, the United States, and the former Soviet Union joined together under the banner of the INTOR Workshop (INternational group working on a TOkamak Reactor) to share their individual research on nuclear fusion's viability as an energy source. Their ten years of cooperative work on the design and development possibilities for harnessing nuclear energy planted the seeds for the International Thermonuclear Experimental Reactor (ITER), construction of which began in 2008 and whose goal it is to demonstrate the scientific and technical feasibility of fusion power. Weston Stacey served as the INTOR Workshop's vice-chairman (and U.S. representative) and kept a journal in which he detailed both the scientific participants' technical work as well as their more political interactions. In this first person narrative, Stacey provides an accessible account (introducing explanatory material when necessary) of the research and development activities conducted to determine the viability of designing, constructing, and operating a tokamak experimental power reactor. Of more human interest were the obstacles the Workshop leaders and participants faced as they advanced their own countries' priorities while striving to make progress on the global future of nuclear fusion technology. Personal anecdotes illuminate the mixing of cultures and the challenges presented by the Cold War's unique political climate. While the focus of the book centers on the history of the INTOR Workshop, Stacey paints a full picture of the people and places involved in the work, how decisions were made, and how these efforts laid the groundwork for ITER's subsequent development. This text will appeal not only to those studying fusion science and engineering, but to anyone interested in a unique story of how international relations and scientific study intersect, ultimately one of collaboration for the sake of a common goal.
Energy comes in many shapes and forms, from wind, solar power, geothermal, and biomass to coal, natural gas, and petroleum. The energy we consume is constantly changing, but the use of these resources-whether renewable or nonrenewable-has long-term impacts on our planet. While there has been this recent shift to renewable energy within the United States, the worldwide demand for all energy types continues to increase at a rapid rate. In fact, it has increased by 84% over the past twenty years. Despite their dwindling supply, these resources are still heavily relied on today. Coal still accounts for 30% of the electricity generated by the United States, even though natural gas is now the primary energy used to produce electricity. Likewise, only 7% of electricity usage worldwide is linked to solar and wind energy. In The Changing Energy Mix, Paul F. Meier compares twelve renewable and nonrenewable energy types using twelve common technical criteria. These criteria span projected reserves, cost to the consumer and supplier, energy balances, environmental issues, land area required, and lasting impacts. While explaining the pros and cons of these resources, Meier takes readers through the history of energy in the United States and world. He provides insight into energy sources, such as wind-powered and solar-powered electricity (which did not exist until the mid and late 80s, respectively), and he explains the constantly evolving world of energy. Breaking down the potential promises and struggles of transitioning to a more renewable energy-based economy, Meier explains the positive and negative implications of these various sources of energy. The resulting book equips readers with a unique understanding of the history, availability, technology, implementation cost, and concerns of renewable and nonrenewable energy.
This textbook introduces energy utilisation. It outlines energy balances - which are determined by the fundamental laws of thermodynamics-, the fundamentals of atomic and nuclear mechanisms, the laws of fluid mechanics and electromagnetism. The technologies which stem from these mechanisms, including steam power plants, solar and wind energy systems, hydrodynamic power, biomass and geothermal energy systems, are all discussed. Prospects for future projects, such as nuclear fusion, fuel cells, and smart energy concepts are presented, as well as the role of energy balances in relation to climate engineering. Opportunities and Limits of Energy Utilisation will be of interest to graduate students, as well as researchers, lecturers, industry engineers. It provides numerous examples, problems and solutions, making it particularly relevant to students looking for a thorough understanding of the fundamentals of advanced energy technologies.
Sustainability Principles and Practice gives an accessible and comprehensive overview of the interdisciplinary field of sustainability. The focus is on furnishing solutions and equipping students with both conceptual understanding and technical skills. Each chapter explores one aspect of the field, first introducing concepts and presenting issues, then supplying tools for working toward solutions. Elements of sustainability are examined piece by piece, and coverage ranges over ecosystems, social equity, environmental justice, food, energy, product life cycles, cities, and more. Techniques for management and measurement as well as case studies from around the world are provided. The 3rd edition includes greater coverage of resilience and systems thinking, an update on the Anthropocene as a formal geological epoch, the latest research from the IPCC, and a greater focus on diversity and social equity, together with new details such as sustainable consumption, textiles recycling, microplastics, and net-zero concepts. The coverage in this edition has been expanded to include issues, solutions, and new case studies from around the world, including Europe, Asia, and the Global South. Chapters include further reading and discussion questions. The book is supported by a companion website with online links, annotated bibliography, glossary, white papers, and additional case studies, together with projects, research problems, and group activities, all of which focus on real-world problem-solving of sustainability issues. This textbook is designed to be used by undergraduate college and university students in sustainability degree programs and other programs in which sustainability is taught.
This open access book discusses the eroding economics of nuclear power for electricity generation as well as technical, legal, and political acceptance issues. The use of nuclear power for electricity generation is still a heavily disputed issue. Aside from technical risks, safety issues, and the unsolved problem of nuclear waste disposal, the economic performance is currently a major barrier. In recent years, the costs have skyrocketed especially in the European countries and North America. At the same time, the costs of alternatives such as photovoltaics and wind power have significantly decreased.
This textbook accommodates the two divergent developmental paths which have become solidly established in the field of fusion energy: the process of sequential tokamak development toward a prototype and the need for a more fundamental and integrative research approach before costly design choices are made.Emphasis is placed on the development of physically coherent and mathematically clear characterizations of the scientific and technological foundations of fusion energy which are specifically suitable for a first course on the subject. Of interest, therefore, are selected aspects of nuclear physics, electromagnetics, plasma physics, reaction dynamics, materials science, and engineering systems, all brought together to form an integrated perspective on nuclear fusion and its practical utilization.The book identifies several distinct themes. The first is concerned with preliminary and introductory topics which relate to the basic and relevant physical processes associated with nuclear fusion. Then, the authors undertake an analysis of magnetically confined, inertially confined, and low-temperature fusion energy concepts. Subsequently, they introduce the important blanket domains surrounding the fusion core and discuss synergetic fusion-fission systems. Finally, they consider selected conceptual and technological subjects germane to the continuing development of fusion energy systems.
We need energy to warm and light our homes, to power our transport and communications, and to support our manufacturing industries. Can we obtain enough energy to satisfy the needs of a rapidly increasing world population without, at the same time, devastating the earth? Is nuclear power the way to do this?This book surveys available energy sources and their effects on the environment in the context of moral imperatives and political realities.
We need energy to warm and light our homes, to power our transport and communications, and to support our manufacturing industries. Can we obtain enough energy to satisfy the needs of a rapidly increasing world population without, at the same time, devastating the earth? Is nuclear power the way to do this? This book surveys available energy sources and their effects on the environment in the context of moral imperatives and political realities.
Intended primarily for undergraduate chemical-engineering students, this book also includes material which bridges the gap between undergraduate and graduate requirements. The introduction contains a listing of the principal types of reactors employed in the chemical industry, with diagrams and examples of their use. There is then a brief exploration of the concepts employed in later sections for modelling and sizing reactors, followed by basic information on stoichiometry and thermodynamics, and the kinetics of homogeneous and catalyzed reactions. Subsequent chapters are devoted to reactor sizing and modelling in some simple situations, and more detailed coverage of the design and operation of the principal reactor types.
The book offers the first systematic account of Iran's foreign policy following the nuclear agreement (JCPOA) of July 14, 2015. The author evaluates in what ways the JCPOA, in conjunction with the dramatic changes taking shape in the international order, have affected Iran's foreign policy. Known as Normalizers, the moderate leadership under President Hassan Rouhani had planned to normalize Iran's foreign relations by curtailing terrorism and reintegrate Iran into the community of nations. Their hardline opponents, the Principalists, rejected the JCPOA as a tool of subjection to the West and insisted on exporting the Islamist revolution, a source of much destabilization and terror in the region and beyond. The project also analyzes the struggle between Normalizers and their hardline opponents with regards to global and regional issues and Iran's foreign policy towards global powers including the U.S., Russia, EU, and regional countries including Iraq, Syria, Israel, Saudi Arabia and Turkey.
This text/reference provides an excellent introduction to fundamental topics in radiation protection, including energetics, kinetics, interaction, external radiation protection, dosimetry, standards, and measurement. Chapters on radioactive waste and radon, topics not normally covered in introductory texts, have been incorporated as well. An extensive glossary of terms, abbreviations, acronyms, physical constants, units, and unit conversions provides a ready source of frequently needed information. Several appendices contain specifications and vendors for commercially available portable radiation survey instruments, personal dosimeters, and radon/radon progeny monitors.
On September 27 - October 3, 2008 the NATO Advanced Research Workshop (ARW) on progress in high-energy physics and nuclear safety was held in Yalta, Crimea (see: http: //crimea.bitp.kiev.ua and http: //arw.bitp.kiev.ua). Nearly 50 leading experts in high-energy and nuclear physics from Eastern and Western Europe as well as from North America participated at the Workshop. The topics of the ARW covered recent results of theoretical and experimental studies in high-energy physics, accelerator, detection and nuclear technologies, as well as problems of nuclear safety in high-energy experimentation and in nuclear - dustry. The forthcoming experiments at the Large Hadron Collider (LHC) at CERN and cosmic-ray experiments were among the topics of the ARW. An important aspect of the Workshop was the scienti?c collaboration between nuclear physicists from East and West, especially in the ?eld of nuclear safety. The present book contains a selection of invited talks presented at the ARW. The papers are grouped in two part
This book provides a history of emergency planning with respect to nuclear power plant accidents from the 1950's to the 2000's. It gives an overview of essential concepts that a working emergency planner should know, including brief overviews of the health physics and plant engineering that applies to emergency planning. Each chapter covers topics unique to radiological planning that distinguish it from planning for natural disasters. Some of the topics include processes that damage fuel, reactor source terms, basic dispersion theory, protective measures for the public and emergency worker, environmental surveys, and the essential elements of a drill and exercise program. Emergency Planning for Nuclear Power Plants is not intended as a guide to meeting regulatory requirements but provides an understanding of the essential concepts and language of radiological planning, so the planner can apply those concepts to their particular situation.
This revised second edition of a popular handbook for engineers describes the important relationship between high-energy radiation environments, electronic device physics and materials. It is a straightforward account of the problems which arise when high-energy radiation bombards matter and of engineering methods for solving those problems. Radiation effects are a problem encountered in the use of highly engineered materials such as semiconductors, optics and polymers. The finely-tuned properties of these materials may change drastically when exposed to a radiation environment such as a bean of X-rays or electrons, the space environment or the 'hadrons' in CERN's new collider. All of these environments and several more are described. The impact of these environments on microelectronics in computing, data processing and communication is the core of this book (highlighted in chapters on MOS and optical devices). While unashamedly oriented to the engineer-designer and manager, with descriptions in a highly readable form, there is no compromise in physical accuracy when describing high-energy radiation and the effects it produces, such as electronic failure, colour centres and the decay of strength. A great breadth of technical data, needed to make predictions on the spot, is presented, with literature references needed for further research and also a compendium of websites which have been tested and used by authors.
Accurate uranium analysis, and particularly for isotope measurements, is essential in many fields, including environmental studies, geology, hydrogeology, the nuclear industry, health physics, and homeland security. Nevertheless, only a few scientific books are dedicated to uranium in general and analytical chemistry aspects in particular. Analytical Chemistry of Uranium: Environmental, Forensic, Nuclear, and Toxicological Applications covers the fascinating advances in the field of analytical chemistry of uranium. Exploring a broad range of topics, the book focuses on the analytical aspects of industrial processes that involve uranium, its presence in the environment, health and biological implications of exposure to uranium compounds, and nuclear forensics. Topics include: Examples of procedures used to characterize uranium in environmental samples of soil, sediments, vegetation, water, and air Analytical methods used to examine the rigorous specifications of uranium and its compounds deployed in the nuclear fuel cycle Health aspects of exposure to uranium and the bioassays used for exposure assessment Up-to-date analytical techniques used in nuclear forensics for safeguards in support of non-proliferation, including single particle characterization Each chapter includes an overview of the topic and several examples to demonstrate the analytical procedures. This is followed by sample preparation, separation and purification techniques where necessary. The book supplies readers with a solid understanding of the analytical chemistry approach used today for characterizing the different facets of uranium, providing a good starting point for further investigation into this important element. |
You may like...
Global Nuclear Developments - Insights…
Pantelis F. Ikonomou
Hardcover
R3,274
Discovery Miles 32 740
Low-Energy Nuclear Reactions and New…
Jan Marwan, Steven Krivit
Hardcover
R5,773
Discovery Miles 57 730
Compound-Nuclear Reactions - Proceedings…
Jutta Escher, Yoram Alhassid, …
Hardcover
R4,513
Discovery Miles 45 130
International Cooperation for Enhancing…
Luciano Maiani, Raymond Jeanloz, …
Hardcover
R1,419
Discovery Miles 14 190
The Technological and Economic Future of…
Amela Ajanovic, Lutz Mez, …
Hardcover
R1,632
Discovery Miles 16 320
Fundamentals of CANDU Reactor Physics
Wei Shen, Benjamin Rouben
Hardcover
R2,425
Discovery Miles 24 250
|