![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Energy technology & engineering > Nuclear power & engineering
In September, 1999, with the generous support of NATO, scientists from 18 different nations gathered in Katsiveli, Yalta, Ukraine at the NATO Advanced Research Workshop on Hydrogen Materials Science and Chemistry of Metal Hydrides to present their research and to discuss world energy problems and possible solutions, interactions of hydrogen with materials, the role of hydrogen in materials science, and the chemistry of metal hydrides. High level and highly professional presentations were accompanied by a great deal of discussion and debate of the issues from both fundamental and global perspectives. The result was a large number of new collaborations, new directions, and better understanding of energy and materials issues. The research presented at this meeting can be found in this volume. These papers range from global perspectives such as the new vision of energy and how hydrogen fits into that future, to reviews such as a look at nickel hydride over the last 40 years, to very specific current research. A large number of papers are included on hydrogen and materials. These papers include articles on properties such as superconductivity, diffusion EMF, magnetic properties, physico chemical properties, phase composition, and permeability as a result of the interaction with or incorporation of hydrogen. Also included are papers discussing the use of hydrogen as a processing or alloying agent. The use of hydrogen in the synthesis of battery electrode materials, composite materials, and alloys is also presented."
Safety of VVER-440 Reactors endeavours to promote an increase in the safety of VVER-440 nuclear reactors via the improvement of fission products limitation systems and the implementation of special non-destructive spectroscopic methods for materials testing. All theoretical and experimental studies performed the by author over the last 25 years have been undertaken with the aim of improving VVER-440 defence in depth, which is one of the most important principle for ensuring safety in nuclear power plants. Safety of VVER-440 Reactors is focused on the barrier system through which the safety principle is organised: * nuclear fuel matrix; * fuel cladding; * integrity of primary circuit; and * confinement system. All these barriers are described in detail and are compared to European standards. Industrial engineers will find Safety of VVER-440 Reactors a useful guide to the safe operation of nuclear power plants and it is an informative source of information for researchers in both industry and academia. Employees of related governmental and regulatory organisations may also benefit from reading this book.
Market: Scientists and students involved in thermonuclear fusion research. Thermonuclear fusion research using the confinement device tokamak represents one of the most prominent science projects in the second half of the 20th century. International Tokamak Community is now committing significant effort and funds to experiments with burning plasma, hot and dense enough to produce significant nuclear fusion reactions. The methods used to enhance tokamak performance have a profound and immediate effect on machine design. This book provides an up-to-date account of research in tokamak fusion and puts forward innovative ideas in confinement physics.
While many books are available on disaster medicine, none is specifically devoted to the role of physicians in the management of patients exposed to radiation leakage from a damaged nuclear power plant. "Radiation Disaster Medicine" aims to fill this void based on the response to the Fukushima nuclear accident. Each chapter addresses principles and practices of radiation medicine within the specific context of that accident. Topics covered include the role of physicians in radiation disasters, the concepts of external and internal exposure, prehospital and hospital response, disaster behavioral health, and radiation emergency response from the perspective of national and international institutions. Most of the contributors are active educators and researchers in radiation medicine with first-hand experience in dealing with prehospital triage and management of patients within secondary and tertiary care hospitals in Japan.
From the multi-award winning editorial team of G. Robert Odette (UCSB) and Steve Zinkle (ORNL), and with a contributor board drawn exclusively from the leaders of each alloy discipline, "Structural Alloys for Nuclear Energy Applications" instructs the current and next generations of researchers and industry staff on the behavior of steels and nickel-base alloys for nuclear energy applications. The book covers phenomenon including fatigue, deformation, and embrittlement, as well as materials topics such as advanced ODS steels, RAFM steels for fusion, computational design of nuclear structural materials, and much more. Distilling valuable archival information for international
researchers in the field of radiation effects on structural
materials, this full-color reference is a critical resource for
graduate students and institutional staff at this time of pivotal
change in the nuclear industry.
This book presents a comprehensive overview of Ukraine's nuclear history, beginning from its experiences within the Russian Empire in the early 20th century, through the Soviet period, to the emergence of Ukraine as an independent state that inherited the world's third-largest nuclear arsenal. The book discusses the development of the nuclear infrastructure on Ukrainian soil and offers a rich and nuanced background of how Ukraine became an important and integrated part of the Soviet nuclear infrastructure. It further analyzes Ukraine's nuclear disarmament based on extensive primary source material and places the Ukrainian nuclear reversal process in a larger international political context where Russias, the United States, and other players actions are interpreted in the light of the impact on the current nuclear non-proliferation regime. Finally, the book presents the nuclear-related development after the nuclear disarmament. It describes the integration of Ukraine into the international community and the role of nuclear power in the energy mix of the nation today. Concluding, Ukraines adaptation to the new security situation after the Russian annexation of Crimea is described and discussed. This volume is a must-read for scholars, researchers, students, and policy-makers interested in a better understanding of Ukraine's nuclear history, the political background of the conflict in Eastern Ukraine, as well as of security studies and international relations in general. The work on this book has been supported by the Swedish Radiation Authority (SSM) in the Nuclear History of Ukraine Project (2015-2019).
Dr. Samuel Glasstone, the senior author of the previous editions of this book, was anxious to live until his ninetieth birthday, but passed away in 1986, a few months short of this milestone. I am grateful for the many years of stimulation received during our association, and in preparing this edition have attempted to maintain his approach. Previous editions of this book were intended to serve as a text for students and a reference for practicing engineers. Emphasis was given to the broad perspective, particularly for topics important to reactor design and oper ation, with basic coverage provided in such supporting areas as neutronics, thermal-hydraulics, and materials. This, the Fourth Edition, was prepared with these same general objectives in mind. However, during the past three decades, the nuclear industry and university educational programs have matured considerably, presenting some challenges in meeting the objec tives of this book. Nuclear power reactors have become much more complex, with an ac companying growth in supporting technology. University programs now offer separate courses covering such basic topics as reactor physics, thermal hydraulics, and materials. Finally, the general availability of inexpensive xv xvi Preface powerful micro-and minicomputers has transformed design and analysis procedures so that sophisticated methods are now commonly used instead of earlier, more approximate approaches."
The clamor for non-carbon dioxide emitting energy production has directly impacted on the development of nuclear energy. As new nuclear plants are built, plans and designs are continually being developed to manage the range of challenging requirement and problems that nuclear plants face especially when managing the greatly increased operating temperatures, irradiation doses and extended design life spans. Materials for Nuclear Plants: From Safe Design to Residual Life Assessments provides a comprehensive treatment of the structural materials for nuclear power plants with emphasis on advanced design concepts. Materials for Nuclear Plants: From Safe Design to Residual Life Assessments approaches structural materials with a systemic approach. Important components and materials currently in use as well as those which can be considered in future designs are detailed, whilst the damage mechanisms responsible for plant ageing are discussed and explained. Methodologies for materials characterization, materials modeling and advanced materials testing will be described including design code considerations and non-destructive evaluation concepts. Including models for simple system dynamic problems and knowledge of current nuclear power plants in operation, Materials for Nuclear Plants: From Safe Design to Residual Life Assessments is ideal for students studying postgraduate courses in Nuclear Engineering. Designers on courses for code development, such as ASME or ISO and nuclear authorities will also find this a useful reference.
Nuclear Decommissioning Case Studies: Characterization, Waste Management, Reuse and Recycle, Author’s Statement on the Sustainability of Nuclear Decommissioning, Volume Six presents a selection of global case studies that focus on a range of technologies for the decontamination, dismantling, spent fuel treatment and recycling of nuclear decommissioning. The book presents best practices by analyzing errors and inadequacies, leading the reader to sound decision-making. The events covered in this publication range from national and local legislation, to regulatory positions, statements or recommendations, licensing steps and transition phases. Decommissioning experts, including regulators, operators, waste managers, researchers and academics will find this book to be suitable supplementary material to Michele Laraia’s reference works on the theory and applications of nuclear decommissioning. Alongside the other case studies books in this series, readers will obtain an understanding of various key case studies-what happened and what we can learn from them, to help supplement, solidify and strengthen their understanding of the topic.
Proceedings of the 3rd World Conference on [title] held in Osaka, Japan, May 1989. The 107 papers are arranged in 16 categories: reviews; reactor facilities; small source systems; detectors; film method; track-etch method; television method; image processing; real-time applications; nuclear applicat
This book attempts to look into the genesis of security culture as a concept which emerged with the recognition of the role of the human factor in the context of security. It traces the rapid evolution of security culture into a multi-functional discipline reinforced by supplementary tools such as assessment and enhancement methodologies, reviews practical steps to harmonize nuclear safety and security culture as well as recommends its practical application to address insider threats and their consequences. In addition, it demonstrates how to tailor the generic model of nuclear security culture to meet specific needs of diverse facilities and activities in different countries. Finally, the book discusses several challenges which need to be addressed to make security culture a user-friendly, universal, and sustainable instrument to turn the perception of the human factor as a liability into an asset of nuclear security.
This book covers the basic principles of both fusion and plasma physics, examining their combined application for driving controlled thermonuclear energy. The author begins by explaining the underlying scientific theory, and then goes on to explore the nuances of deployment within thermonuclear reactors. The potential for these technologies to help shape the new generation of clean energy is examined in-depth, encompassing perspectives both highlighting benefits, and warning of challenges associated with the nuclear fusion pathway. The associated computer code and numerical analysis are included in the book. No prior knowledge of plasma physics or fusion is required.
The Three Mile Island and Chernobyl nuclear incidents emphasized the need for the world-wide nuclear community to cooperate further and exchange the results of research in this field in the most open and effective manner. Recognizing the roles of heat and mass transfer in all aspects of fission-product behavior in sever reactor accidents, the Executive Committee of the International Centre for Heat and Mass Transfer organized a Seminar on Fission Product Transport Processes in Reactor Accidents. This book contains the eleven of the lectures and all the papers presented at the seminar along with four invited papers that were not presented and a summary of the closing session.
This thesis investigates the behavior of two candidate materials (a-SiO2 and MgO) for applications in fusion (e.g., the International Thermonuclear Experimental Reactor ITER) and Generation IV fission reactors. Both parts of the thesis - the development of the ionoluminescence technique and the study of the ion-irradiation effects on both materials - are highly relevant for the fields of the ion-beam analysis techniques and irradiation damage in materials. The research presented determines the microstructural changes at different length scales in these materials under ion irradiation. In particular, it studies the effect of the irradiation temperature using several advanced characterization techniques. It also provides much-needed insights into the use of these materials at elevated temperatures. Further, it discusses the development of the ion-beam-induced luminescence technique in different research facilities around the globe, a powerful in situ spectroscopic characterization method that until now was little known. Thanks to its relevance, rigorosity and quality, this thesis has received twoprestigious awards in Spain and France.
The surplus of plutonium in the world is both an important security issue, and a fact with implications for nuclear energy and environmental policy internationally. The two perspectives are inextricably intertwined in considering options for dealing with the plutonium surplus. It was for this reason that two research programmes at the Royal Institute of International Affairs - respectively on Energy and Environment, and on International Security - jointly approached NATO with a view to organising a work shop on the issue. It was most welcome then to learn that the NATO Science Programe was already supporting plans for a workshop on the issue, initiated by Richard Garwin, and we were pleased to accept the resulting invitation to host that workshop. DrGarwin prepared the initial agenda and established contacts and initial approaches to many of the participants; we were able to develop the agenda further and extend participation in some complementary ways. The result was a most lively and broad-ranging internation al and inter-disciplinary discussion. As the hosts, the RIIA was also given lead responsibility for producing the pro ceedings of the workshop as a publication for NATO. Many of the papers to the work shop are more technical than usually involved in a workshop at the Royal Institute. Yet this is an area in which the policy options are unusually dependent upon a good under standing of the technical issues. which themselves are often a matter of dispute."
This expanded new edition develops the theory of nuclear reactors from the fundamentals of fission to the operating characteristics of modern reactors. The first half of the book emphasizes reactor criticality analysis and all of the fundamentals that go into modern calculations. Simplified one group diffusion theory models are presented and extended into sophisticated multi-group transport theory models. The second half of the book deals with the two main topics of interest related to operating reactors - reactor kinetics/dynamics, and in-core fuel management. Additional chapters have been added to expand and bring the material up-to-date and include the utilization of more computer codes. Code models and detailed data sets are provided along with example problems making this a useful text for students and researchers wishing to develop an understanding of nuclear power and its implementation in today's modern energy spectrum. Covers the fundamentals of neutronic analysis for nuclear reactor systems to help understand nuclear reactor theory; Describes the benefits, uses, safety features, and challenges related to implementation of Small Modular Reactors; Provides examples, data sets, and code to assist the reader in obtaining mastery over the subjects.
This book explains the modelling and simulation of thermal power plants, and introduces readers to the equations needed to model a wide range of industrial energy processes. Also featuring a wealth of illustrative, real-world examples, it covers all types of power plants, including nuclear, fossil-fuel, solar and biomass. The book is based on the authors' expertise and experience in the theory of power plant modelling and simulation, developed over many years of service with EDF. In more than forty examples, they demonstrate the component elements involved in a broad range of energy production systems, with detailed test cases for each chemical, thermodynamic and thermo-hydraulic model. Each of the test cases includes the following information: * component description and parameterization data; * modelling hypotheses and simulation results; * fundamental equations and correlations, with their validity domains; * model validation, and in some cases, experimental validation; and * single-phase flow and two-phase flow modelling equations, which cover all water and steam phases. A practical volume that is intended for a broad readership, from students and researchers, to professional engineers, this book offers the ideal handbook for the modelling and simulation of thermal power plants. It is also a valuable aid in understanding the physical and chemical phenomena that govern the operation of power plants and energy processes.
This book is a compilation of selected papers from the Sixth International Symposium on Software Reliability, Industrial Safety, Cyber Security and Physical Protection of Nuclear Power Plant, held in October 2021 in Zhuji, Zhejiang, China. The purpose of this symposium is to discuss Inspection, test, certification and research for the software and hardware of Instrument and Control (I&C) systems in nuclear power plants (NPP), such as sensors, actuators and control system. It aims to provide a platform of technical exchange and experience sharing for those broad masses of experts and scholars and nuclear power practitioners, and for the combination of production, teaching and research in universities and enterprises to promote the safe development of nuclear power plant. Readers will find a wealth of valuable insights into achieving safer and more efficient instrumentation and control systems.
This hands-on textbook introduces physics and nuclear engineering students to the experimental and theoretical aspects of fission physics for research and applications through worked examples and problem sets. The study of nuclear fission is currently undergoing a renaissance. Recent advances in the field create the opportunity to develop more reliable models of fission predictability and to supply measurements and data to critical applications including nuclear energy, national security and counter-proliferation, and medical isotope production. An Introduction to Nuclear Fission provides foundational knowledge for the next generation of researchers to contribute to nuclear fission physics.
This book introduces the research process and principles of the controlled super-coupling nuclear fusion experiment at the Experimental Advanced Superconducting Tokamak (EAST) nuclear fusion reactor in Hefei, China. It uses straightforward language to explain how nuclear fusion can provide safe, environmentally friendly, clean, and inexhaustible energy in future. EAST is the world's first fully superconducting, non-circular cross-section tokamak nuclear fusion experimental device, independently developed by the Chinese Academy of Sciences. This book helps demonstrate China's cutting-edge scientific and technological advances to the rest of the world, helps spread the scientific spirit to people around the globe, and promotes prosperity and development. The book is intended for all non-experts who would like to learn more about nuclear energy and related technologies.
All engineers and applied scientists will need to harness the power of machine learning to solve the highly complex and data intensive problems now emerging. This text teaches state-of-the-art machine learning technologies to students and practicing engineers from the traditionally "analog" disciplines-mechanical, aerospace, chemical, nuclear, and civil. Dr. McClarren examines these technologies from an engineering perspective and illustrates their specific value to engineers by presenting concrete examples based on physical systems. The book proceeds from basic learning models to deep neural networks, gradually increasing readers' ability to apply modern machine learning techniques to their current work and to prepare them for future, as yet unknown, problems. Rather than taking a black box approach, the author teaches a broad range of techniques while conveying the kinds of problems best addressed by each. Examples and case studies in controls, dynamics, heat transfer, and other engineering applications are implemented in Python and the libraries scikit-learn and tensorflow, demonstrating how readers can apply the most up-to-date methods to their own problems. The book equally benefits undergraduate engineering students who wish to acquire the skills required by future employers, and practicing engineers who wish to expand and update their problem-solving toolkit.
This book takes a holistic approach to plasma physics and controlled fusion via Inertial Confinement Fusion (ICF) techniques, establishing a new standard for clean nuclear power generation. Inertial Confinement Fusion techniques to enable laser-driven fusion have long been confined to the black-box of government classification due to related research on thermonuclear weapons applications. This book is therefore the first of its kind to explain the physics, mathematics and methods behind the implosion of the Nd-Glass tiny balloon (pellet), using reliable and thoroughly referenced data sources. The associated computer code and numerical analysis are included in the book. No prior knowledge of Laser Driven Fusion and no more than basic background in plasma physics is required. |
You may like...
Science and Technology of Liquid Metal…
Thiagarajan Gnanasekaran
Paperback
R4,826
Discovery Miles 48 260
Low-Energy Nuclear Reactions and New…
Jan Marwan, Steven Krivit
Hardcover
R5,834
Discovery Miles 58 340
Scientific Basis for Nuclear Waste…
Neil Hyatt, Kevin M. Fox, …
Hardcover
R1,993
Discovery Miles 19 930
Fractional-Order Models for Nuclear…
Gilberto Espinosa Paredes
Paperback
R4,200
Discovery Miles 42 000
The 2011 Fukushima Nuclear Power Plant…
Yotaro Hatamura, Seiji Abe, …
Paperback
|