![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Energy technology & engineering > Nuclear power & engineering
Fundamentals of Thermal and Nuclear Power Generation is the first volume in the JSME Series in Thermal and Nuclear Power Generation. The first part of this volume provides a thorough and complete reference on the history of thermal and nuclear power generation, which has informed and sculpted today's industry. It prepares readers for subsequent publications in the series that address more advanced topics and will particularly benefit early career researchers and those approaching the industry from an alternative discipline. Modern thermal and nuclear power generation systems and technologies are then explored, including clear analysis on the fundamentals of thermodynamics, hydrodynamics, thermal engineering, combustion engineering, and nuclear physics. The impact of these technologies on society is considered throughout, as well as supply issues, accident risk analysis, and important emission and sustainability considerations. This book is an invaluable resource for researchers and professional engineers in nuclear and thermal energy engineering, and postgraduate and undergraduate students in power generation, especially nuclear and thermal.
With more than 75 years of combined working experience in the area of reactor physics and safety, the intention of the authors of this monograph is to provide a practical book on reactor physics, particularly for the safe operation of aged CANDU reactors, with minimal mathematics or equations. The book gives a glimpse of first principles and their engineering application in reactor physics, for those who are interested in or are working in the Canadian nuclear industry. The book is also ideal as a reference for physicists, operators, regulatory staff, and for those who need to interact with reactor physicists at CANDU sites, nuclear laboratories, institutes, universities, or engineering companies.
Nuclear Power Plant Design and Analysis Codes: Development, Validation, and Application presents the latest research on the most widely used nuclear codes and the wealth of successful accomplishments which have been achieved over the past decades by experts in the field. Editors Wang, Li,Allison, and Hohorst and their team of authors provide readers with a comprehensive understanding of nuclear code development and how to apply it to their work and research to make their energy production more flexible, economical, reliable and safe. Written in an accessible and practical way, each chapter considers strengths and limitations, data availability needs, verification and validation methodologies and quality assurance guidelines to develop thorough and robust models and simulation tools both inside and outside a nuclear setting. This book benefits those working in nuclear reactor physics and thermal-hydraulics, as well as those involved in nuclear reactor licensing. It also provides early career researchers with a solid understanding of fundamental knowledge of mainstream nuclear modelling codes, as well as the more experienced engineers seeking advanced information on the best solutions to suit their needs.
The Microbiology of Nuclear Waste Disposal is a state-of-the-art reference featuring contributions focusing on the impact of microbes on the safe long-term disposal of nuclear waste. This book is the first to cover this important emerging topic, and is written for a wide audience encompassing regulators, implementers, academics, and other stakeholders. The book is also of interest to those working on the wider exploitation of the subsurface, such as bioremediation, carbon capture and storage, geothermal energy, and water quality. Planning for suitable facilities in the U.S., Europe, and Asia has been based mainly on knowledge from the geological and physical sciences. However, recent studies have shown that microbial life can proliferate in the inhospitable environments associated with radioactive waste disposal, and can control the long-term fate of nuclear materials. This can have beneficial and damaging impacts, which need to be quantified.
Fractional-Order Models for Nuclear Reactor Analysis presents fractional modeling issues in the context of anomalous diffusion processes in an accessible and practical way. The book emphasizes the importance of non-Fickian diffusion in heterogeneous systems as the core of the nuclear reactor, as well as different variations of diffusion processes in nuclear reactors which are presented to establish the importance of nuclear and thermohydraulic phenomena and the physical side effects of feedback. In addition, the book analyzes core issues in fractional modeling in nuclear reactors surrounding phenomenological description and important analytical sub-diffusive processes in the transport neutron. Users will find the most innovative modeling techniques of nuclear reactors using operator differentials of fractional order and applications in nuclear design and reactor dynamics. Proposed methods are tested with Boltzmann equations and non-linear order models alongside real data from nuclear power plants, making this a valuable resource for nuclear professionals, researchers and graduate students, as well as those working in nuclear research centers with expertise in mathematical modeling, physics and control.
Handbook of Small Modular Nuclear Reactors, Second Edition is a fully updated comprehensive reference on Small Modular Reactors (SMRs), which reflects the latest research and technological advances in the field from the last five years. Editors Daniel T. Ingersoll and Mario D. Carelli, along with their team of expert contributors, combine their wealth of collective experience to update this comprehensive handbook that provides the reader with all required knowledge on SMRs, expanding on the rapidly growing interest and development of SMRs around the globe. This book begins with an introduction to SMRs for power generation, an overview of international developments, and an analysis of Integral Pressurized Water Reactors as a popular class of SMRs. The second part of the book is dedicated to SMR technologies, including physics, components, I&C, human-system interfaces and safety aspects. Part three discusses the implementation of SMRs, covering economic factors, construction methods, hybrid energy systems and licensing considerations. The fourth part of the book provides an in-depth analysis of SMR R&D and deployment of SMRs within eight countries, including the United States, Republic of Korea, Russia, China, Argentina, and Japan. This edition includes brand new content on the United Kingdom and Canada, where interests in SMRs have increased considerably since the first edition was published. The final part of the book adds a new analysis of the global SMR market and concludes with a perspective on SMR benefits to developing economies. This authoritative and practical handbook benefits engineers, designers, operators, and regulators working in nuclear energy, as well as academics and graduate students researching nuclear reactor technologies.
Global Progress on Molten Salt Reactors: A Companion to Dolan’s Molten Salt Reactors and Thorium Energy, Second Edition presents global perspectives on the latest research and technological advances. Each case study utilizes a comprehensive template that guides the reader through country specific research. Useful data which can be applied to work and research is included, along with a list of references for further research. Researchers, professional engineers and policymakers will gain a broad picture of worldwide MSR activity and a deep understanding of how theory and practical guidance is applied in a variety of settings, including budgets, approaches and constraints.
Desalination in Nuclear Power Plants presents the latest research on a variety of nuclear desalination techniques for different nuclear reactor systems; it includes also several aspects regarding competitiveness, sustainability, safety, and licensing process. Authors Alonso, del Valle, and Ramirez explore the possibilities of the cogeneration of water and electricity using a nuclear reactor. This book consolidates the latest research to provide readers with a clear understanding of the advantages and disadvantages of the thermal, membrane, and hybrid desalination processes, along with a comprehensive methodology to guide the reader on how to perform levelized cost analyses for water and electricity. The conditions for the coupling of nuclear reactors and desalination plants are presented, and techniques to maximize water and energy production and to reduce their corresponding costs are provided. Mathematical modeling techniques for different components of the power plant are also included based on mass and energy state equations, as well as different steam currents alternatives for coupling along with a proposed method for their evaluation.
Goal Oriented Methodology and Applications in Nuclear Power Plants: A Modern Systems Reliability Approach presents the latest data and research on the modern system reliability approach by GO methodology to improve the quality and reliability of nuclear power plants (NPP). Quality and reliability are two key factors which are critical to the economic success of NPPs, hence this book provides a comprehensive and systematic analysis of the latest data and research illustrated through the provision of examples and solutions, applications and problems to test comprehension. Authors Xiao-Jian, Jian and Hui-Na systematically illustrate reliability modeling, analysis, optimization allocation and assessment, and their applications in NPPs. This book, without assuming prior knowledge, presents all required information in an accessible and easily applied style. It will be particularly valuable to engineering and reliability professionals, nuclear engineering graduate students, reliability engineering specialists and nuclear energy researchers.
Single-Phase, Two-Phase and Supercritical Natural Circulation Systems provides readers with a deep understanding of natural circulation systems. This book equips the reader with an understanding on how to detect unstable loops to ensure plant safety and reliability, calculate heat transport capabilities, and design effective natural circulation loops, stability maps and parallel channel systems. Each chapter begins with an introduction to the circulation system before discussing each element in detail and analyzing its effect on the performance of the system. The book also presents thermosyphon heat transport devices in nuclear and other industrial plants, a common information need for students and researchers alike. This book is invaluable for engineers, designers, operators and consultants in nuclear, mechanical, electrical and chemical disciplines.
Advances of Computational Fluid Dynamics in Nuclear Reactor Design and Safety Assessment presents the latest computational fluid dynamic technologies. It includes an evaluation of safety systems for reactors using CFD and their design, the modeling of Severe Accident Phenomena Using CFD, Model Development for Two-phase Flows, and Applications for Sodium and Molten Salt Reactor Designs. Editors Joshi and Nayak have an invaluable wealth of experience that enables them to comment on the development of CFD models, the technologies currently in practice, and the future of CFD in nuclear reactors. Readers will find a thematic discussion on each aspect of CFD applications for the design and safety assessment of Gen II to Gen IV reactor concepts that will help them develop cost reduction strategies for nuclear power plants.
Beyond Decommissioning: The Reuse and Redevelopment of Nuclear Installations presents the most up-to-date research and guidance on the reuse and redevelopment of nuclear plants and sites. Consultant Michele Laraia extensively builds upon experience from the redevelopment of non-nuclear industrial sites, a technical field that has considerably predated nuclear applications, to help the reader gain a very thorough and practical understanding of the redevelopment opportunities for decommissioned nuclear sites. Laraia emphasizes the socioeconomic and financial benefits from very early planning for site reuse, including how to manage the decommissioning transition, anticipate financial issues, and effectively utilize available resources. With an increasing number of decommissioning projects being conducted worldwide, it is critical that knowledge gained by experts with hands-on experience is passed on to the younger generation of nuclear professionals. Besides, this book describes the experiences of non-nuclear organizations that have reutilized the human, financial, and physical site assets, with adaptations, for a new productive mission, making it a key reference for all parties associated with nuclear operation and decommissioning. Those responsible for nuclear operation and decommissioning are encouraged to incorporate site reuse within an integrated, beginning-to-end view of their projects. The book also appeals to nuclear regulators as it highlights more opportunities to complete nuclear decommissioning safely, speedily, and in the best interests of all concerned parties.
Emerging Natural and Tailored Nanomaterials for Radioactive Waste Treatment and Environmental Remediation: Principles and Methodologies, Volume 29 provides an overview of the most important radionuclide sources in the environment, their interaction with environmental media, and appropriate remediation techniques. The book focuses on the assessment of radionuclide sorption behavior in contaminated sites and the synthesis of new materials for radionuclides remediation through sorption concepts. Chapters investigate the main interaction mechanisms between toxic/radioactive metal ions with natural and manmade materials, natural clay minerals and oxides, and novel nanomaterials, such as ordered mesoporous silicas, carbon nanotubes, graphene, and metal-organic framework-based materials. Techniques and models discussed include kinetics analysis, thermodynamic analysis, surface complexation models, spectroscopic techniques, and theoretical calculations.
An Introduction to Nuclear Waste Immobilisation, Third Edition examines nuclear waste issues, including natural levels of radionuclides in the environment, the geological disposal of waste-forms, and their long-term behavior. It covers all-important aspects of processing and immobilization, including nuclear decay, regulations, new technologies and methods. The book has been updated to include a discussion of the disposal of nuclear waste from non-energy sources, also adding a chapter on the nuclear fuel cycle. Significant focus is given to the analysis of the various matrices used, especially cement and glass, with further discussion of other matrices, such as bitumen. The book's final chapter concentrates on the performance assessment of immobilizing materials and safety of disposal, providing a full range of resources needed to understand and correctly immobilize nuclear waste.
Safety and security are crucial to the operations of nuclear power plants, but cyber threats to these facilities are increasing significantly. Instrumentation and control systems, which play a vital role in the prevention of these incidents, have seen major design modifications with the implementation of digital technologies. Advanced computing systems are assisting in the protection and safety of nuclear power plants; however, significant research on these computational methods is deficient. Cyber Security and Safety of Nuclear Power Plant Instrumentation and Control Systems is a pivotal reference source that provides vital research on the digital developments of instrumentation and control systems for assuring the safety and security of nuclear power plants. While highlighting topics such as accident monitoring systems, classification measures, and UAV fleets, this publication explores individual cases of security breaches as well as future methods of practice. This book is ideally designed for engineers, industry specialists, researchers, policymakers, scientists, academicians, practitioners, and students involved in the development and operation of instrumentation and control systems for nuclear power plants, chemical and petrochemical industries, transport, and medical equipment.
Linear and Non-Linear Stability Analysis in Boiling Water Reactors: The Design of Real-Time Stability Monitors presents a thorough analysis of the most innovative BWR reactors and stability phenomena in one accessible resource. The book presents a summary of existing literature on BWRs to give early career engineers and researchers a solid background in the field, as well as the latest research on stability phenomena (propagation phenomena in BWRs), nuclear power monitors, and advanced computer systems used to for the prediction of stability. It also emphasizes the importance of BWR technology and embedded neutron monitoring systems (APRMs and LPRMs), and introduces non-linear stability parameters that can be used for the onset detection of instabilities in BWRs. Additionally, the book details the scope, advantages, and disadvantages of multiple advanced linear and non linear signal processing methods, and includes analytical case studies of existing plants. This combination makes Linear and Non-Linear Stability Analysis in Boiling Water Reactors a valuable resource for nuclear engineering students focusing on linear and non-linear analysis, as well as for those working and researching in a nuclear power capacity looking to implement stability methods and estimate decay ratios using non-linear techniques.
Fundamentals of Magnetic Thermonuclear Reactor Design is a comprehensive resource on fusion technology and energy systems written by renowned scientists and engineers from the Russian nuclear industry. It brings together a wealth of invaluable experience and knowledge on controlled thermonuclear fusion (CTF) facilities with magnetic plasma confinement - from the first semi-commercial tokamak T-3, to the multi-billion international experimental thermonuclear reactor ITER, now in construction in France. As the INTOR and ITER projects have made an immense contribution in the past few decades, this book focuses on its practical engineering aspects and the basics of technical physics and electrical engineering. Users will gain an understanding of the key ratios between plasma and technical parameters, design streamlining algorithms and engineering solutions.
|
![]() ![]() You may like...
Deep Geological Disposal of Radioactive…
W. R. Alexander, Linda McKinley
Hardcover
R3,666
Discovery Miles 36 660
The 2011 Fukushima Nuclear Power Plant…
Yotaro Hatamura, Seiji Abe, …
Paperback
Scientific Basis for Nuclear Waste…
Neil Hyatt, Kevin M. Fox, …
Hardcover
R2,115
Discovery Miles 21 150
High Temperature Gas-cooled Reactors
Tetsuaki Takeda, Yoshiyuki Inagaki
Paperback
R4,204
Discovery Miles 42 040
Probabilistic Safety Assessment for…
Gennadij V. Arkadov, Alexander F. Getman, …
Hardcover
R4,581
Discovery Miles 45 810
Radioactive Waste Management and…
W. E Lee, Michael I. Ojovan, …
Hardcover
R7,134
Discovery Miles 71 340
Science and Technology of Liquid Metal…
Thiagarajan Gnanasekaran
Paperback
R5,129
Discovery Miles 51 290
|