Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Energy technology & engineering > Nuclear power & engineering
The European Community's research programme 'Management and Disposal of Radioactive Waste' has the prime objective of finding effective means for ensuring the safety of man and his environment against the potential hazards arising from such wastes. In 1980, the Commission of the European Communities held its first major meeting on the subject, and published the proceedings, discussions and results. This volume presents the proceedings of the second such conference, following the completion of a research and development programme in the five intervening years. The main topics discussed are: treatment and conditioning technology, testing and evaluation of waste forms and packages, geologic disposal, migration, and performance analysis of geologic isolation systems; representing an analysis of the latest results achieved by sustained collaboration of leading laboratories in Europe. Thus, all of the contributions are of a high standard from the major exponents in the field throughout the European Community.
The Tenth International Workshop on "Laser Interaction and Related Plasma Phenomena" was held November 11-15, 1991, at the Naval Postgraduate School, Monterey, California. This conference joined physicists from 11 countries (Australia, Canada, China, France, Israel, Italy, Spain, Switzerland, united Kingdom, USA, and the USSR). This meeting was marked by the inauguration of the EDWARD TELLER MEDAL FOR ACHIEVEMENTS IN FUSION ENERGY. This medal served as a celebration of the tenth conference in the 22-year series and as an opportunity to honor one of the world's greatest physicists and a leading pioneer in this field: Edward Teller. Four medals were awarded in the inaugural ceremony. The first recipient of the medal was Nobel Laureate Nikolai G. Basov, who served for many years as Director of the LebedevPhysical Institute of the Academy of Sciences of the USSR. In his address to Edward Teller, Dr. Basov underlined that Dr. Teller was the first in history to produce an exothermal nuclear fusion reaction, the mechanism that may now lead to an inexhaustive, environmentally clean, and low cost energy source in the future. This goal, he stressed, becomes more crucial as the greenhouse effect may not permit burning of fossil fuels for much longer. Basov also reviewed events leading the International Quantum Electronics Conferences of 1963 where he disclosed the first publication on laser fusion and that of 1968 where he reported the first observation of fusion neutrons using a laser-irradiated target. The second recipient was John H.
Since the introduction of the first commercial inductively coupled plasma mass spectrometry (ICP-MS) instruments in 1983, the technique has gained rapid and wide acceptance in many analytical laboratories. There are now well over 400 instruments installed worldwide, which are being used in a range of disciplines for the analysis of geological, environmental, water, medical, biological, metallurgical, nuclear and industrial samples. Experience oflCP-MS in many laboratories is limited, and there is therefore a need for a handbook containing practical advice in addition to fundamental informa tion. Such a handbook would be useful not only to users new to the technique, but also to users with some experience who wish to expand their knowledge of the subject. Therefore we have written this book for users in a variety of fields with differing levels of experience and expertise. The first two chapters provide a brief history of ICP-MS and discussions of design concepts, ICP physical processes, and fundamental principles of instrument operation. Armed with this background knowledge, users will be better equipped to evaluate advantages and limitations of the technique. Detailed descriptions and information for instrumental components are provided in chapter 3. Subsequent chapters deal with the practical aspects of sample analysis by ICP-MS. Whether samples are to be analysed in liquid, solid .or gaseous form is always an important consideration, and there is a wide choice of sample introduction techniques."
A survey of recent developments in the field of plutonium disposal by the application of advanced nuclear systems, both critical and subcritical. Current national R&D plans are summarized. The actinide-fuelled critical reactors are associated with control problems, since they tend to have a small delayed neutron fraction coupled with a small Doppler effect and a positive void coefficient. Current thinking is turning to accelerator-driven subcritical systems for the transmutation of actinides. The book's conclusion is that the various systems proposed are technically feasible, even though not yet technically mature. The book presents a unique summary and evaluation of all relevant possibilities for burning surplus plutonium, presented by experts from a variety of different disciplines and interests, including the defence establishment. The obvious issue - the non-proliferation of nuclear weapons - is vital, but the matter represents a complex technological challenge that also requires an assessment in economic terms.
Chemical pretreatment of nuclear wastes refers to the sequence of separations processes used to partition such wastes into a small volume of high-level waste for deep geologic disposal and a larger volume of low-level waste for disposal in a near-surface facility. Pretreatment of nuclear wastes now stored at several U. S. Department of Energy sites ranges from simple solid-liquid separations to more complex chemical steps, such as dissolution of sludges and removal of selected radionuclides, e. g. , 90Sr, 99Tc, 137CS, and TRU (transuranium) elements. The driving force for development of chemical pretreatment processes for nuclear wastes is the economic advantage of waste minimization as reflected in lower costs for near-surface disposal compared to the high cost of disposing of wastes in a deep geologic repository. This latter theme is expertly and authoritatively discussed in the introductory paper by J. and L. Bell. Seven papers in this volume describe several separations processes developed or being developed to pretreat the large volume of nuclear wastes stored at the US DOE Hanford and Savannah River sites. These papers include descriptions of the type and amount of important nuclear wastes stored at the Hanford and Savannah River sites as well as presently envisioned strategies for their treatment and final disposal. A paper by Strachan et al. discusses chemical and radiolytic mechanisms for the formation and release of potentially explosive hydrogen gas in Tank 241-SY-101 at the Hanford site.
This book of proceedings collects the papers presented at the workshop on "Diagnostics for Experimental Fusion Reactors" held at Villa Monastero, Varenna (Italy) September 4-12, 1997. This workshop was the seventh organized by the International School of Plasma Physics "Piero Caldirola" on the topic of plasma diagnostics and the second devoted to the diagnostic studies for the International Thermonuclear Experimental Reactor (ITER). The proceedings of the first workshop on ITER diagnostics were published by Plenum Press in 1996 with the title "Diagnostics for Experimental Thermonuclear Fusion Reactors". While many of the ideas and studies reported in the first workshop remain valid, there has been sub stantial progress in the design and specification of many diagnostics for ITER. This moti vated a second workshop on this topic and the publication of a new book of proceedings. ITER is a joint venture between Europe, Japan, Russia and USA in the field of con trolled thermonuclear fusion research. The present aim of ITER is to design an experimental fusion reactor that can demonstrate ignition and sustained burn in a magnetically confined plasma. To achieve this goal, a wide range of plasma parameters will have to be measured reliably. It is also anticipated that diagnostics will be used much more extensively as input to control systems on ITER than on present fusion devices and this will require increased relia bility and long-term stability.
The Erice International School of Fusion Reactor Techno logy held its 1981 course on - Unconventional Approaches to Fusion - in combination with the IAEA Technical Committee meeting on - Critical Analysis of Alternative Fusion Concepts -. The two events took place in the second half of March with an overlap of a few days only. The present proceedings include the first week's papers; those presented during the second week will be summarised in Nuclear Fusion. Right from the beginning of the course, and in particular In R. Carruthers' opening talk, it was clear that an uncon ventional approach was considered stimulating insofar as its con ception presented advantageous aspects with respect to the To kamak. Indeed the Tokamak was recognized as an - imper fect frame of reference- (K. H. Schmitter) in the sense that, al though it deserves to be considered as a frame of reference for the other devices because it is the most advanced in the scientific demonstration of controlled thermonuclear fusion, as a fusion reactor, however, the Tokamak does not seem to be completely satisfactory either from an economic or from an operational point of view, if compared with that - enticing ogre -, the proven fission reactor (less enticing to the public). Comparison of a Tokamak reactor with a PWR can be founded on considerations of such a basic nature that it becomes almost automatic to ask how far the various unconventional ap proaches to fusion are exempt from the Tokamak's drawbacks."
This comprehensive bibliography (6248 entries) is the first of its kind in the general field of nuclear target preparation for use with particle accelerators. The dates covered are 1936 to June 1980. The bibliography includes thin and thick particle accelerator targets as well as the prepa ration and use of targets in particle accelerators. The entries in the bibliography are arranged in alphabetical order of authors' names. For ease of use, complete subject, country, and patent indexes have been added. A special expression of gratitude is owed to my wife, Jolana, and I also wish to thank Bill Evans and Stephen Talutis for helping me to organize this bibliography. Jozef Jaklovsky v CONTENTS Abbreviations Bibliography 5 Subject Index Headings 255 Subject Index 263 Country Index 303 Patent Index 319 vii Abbreviations AAAC - Australia Atomic Energy Commission ACNTDS - Chalk River Canada, Nuclear Target Development Soc. Proc. AECL - Atomic Energy of Canada Ltd., Chalk River AEET - Atomic Energy Establishment, Trombay, India AERE - Atomi c Energy Research Establishment, Harwell, Engl and ANL - Argonne National Laboratory, Argonne, Ill., U. S. A. ANU - Australia National University, Canberra BMFT-FBK - Federal Republic of Germany BNL - Brookhaven National Laboratory, Upton, N. Y., U. S. A. BNWL - Battelle Pacific Northwest Labs, Richland, Wash., U. S. A. BONN-HE - Bonn University, FRG."
Californium-252 is a neutron emitter with a high specific activity, making it useful in a variety of applications, the most spectacular of which is in brachytherapy for cancer patients. Radiation oncology has exhausted nearly every option for treating radioresistant tumors by photon brachytherapy, and therefore new types of radiation need to be studied to improve the curability of cancer. Audience: Californium brachytherapy is used in only a few radiation therapy centers in the world, so the book will be highly instructive for radiation oncologists, medical physicists and radiobiologists. The nuclear techniques used in clinical applications may also interest nuclear physicists and engineers.
With the end of the Cold War, new opportunities for interaction have opened up between the United States and the countries of the Former Soviet Union. Many of these important initiatives involve the US Department of Energy (DOE) and the Ministry of the Russian Federation for Atomic Energy (MINA TOM). Currently, collaboration is under way which involves reactor safety, the disposition of fissile materials from the weapons program, radioactive waste disposal, and the safety of nuclear warheads. Another fruitful area of interchange resulted from the radiochemical storage tank accident at the site of the Siberian Chemical Compound at Tomsk-7 in 1993. DOE and MINATOM agreed to meet and exchange information about the accident for the purposes of improving safety. A meeting on the Tomsk tank accident was held in Hanford, Washington in 1993, followed by a second meeting in st. Petersburg, Russia in 1994 in which the agenda expanded to include radiochemical processing safety. A third exchange took place in 1995 in Los Alamos, New Mexico, and additional papers were presented on nonreactor nuclear safety. Following a planning session in 1996 in Seattle, Washington, it was decided to hold a fourth technical exchange on the broader subject of nuclear materials safety management. Through a grant from the North Atlantic Treaty Organization (NATO) Disarmament Programme, the meeting took place on March 17- 21, 1997, in Amarillo, Texas as a NATO Advanced Research Workshop (ARW) through grant no. DISRM 961315.
The surplus of plutonium in the world is both an important security issue, and a fact with implications for nuclear energy and environmental policy internationally. The two perspectives are inextricably intertwined in considering options for dealing with the plutonium surplus. It was for this reason that two research programmes at the Royal Institute of International Affairs - respectively on Energy and Environment, and on International Security - jointly approached NATO with a view to organising a work shop on the issue. It was most welcome then to learn that the NATO Science Programe was already supporting plans for a workshop on the issue, initiated by Richard Garwin, and we were pleased to accept the resulting invitation to host that workshop. DrGarwin prepared the initial agenda and established contacts and initial approaches to many of the participants; we were able to develop the agenda further and extend participation in some complementary ways. The result was a most lively and broad-ranging internation al and inter-disciplinary discussion. As the hosts, the RIIA was also given lead responsibility for producing the pro ceedings of the workshop as a publication for NATO. Many of the papers to the work shop are more technical than usually involved in a workshop at the Royal Institute. Yet this is an area in which the policy options are unusually dependent upon a good under standing of the technical issues. which themselves are often a matter of dispute."
Some Key Issues in Remote Handling M. Becquet TELEMAN: A European Communities Robotics Programme for the Nuclear Industry B. Tolley 7 Practical Experience Using Teleoperated Technology: Teleoperated Devices Used in an Accelerator Coraplex R. Horne 15 Artificial Realities Techniques for Teleoperation of Robotic Systems D. Marini 21 Robot Motion Planning: A Survey C. Torras 27 Autonomous Mobile Robots and Teleoperation J. del R. MilZCm, C. Torms and M. Becquet 41 Kinematic Calibration in Remote Handling and Teleoperation Environment J. -M. Renders 55 Transporters for Teleoperations in JET T. Raimondi 87 Nuclear Teleoperation. Particular Challenges in Decommissioning Applications M. Decreton 109 Manipulators Mascot IV Used in JET and Prospects of Enhancement T. Raimondi and L. Galbiati 139 Position Sensing for Advanced Teleoperation in Nuclear Environment M. Decreton 163 Advanced Telerobotic Systems. Single-Master Multi-SLave Manipulator System and Cellular Robotic System T. Fukuda and K. Kosuge 195 Introduction to Robotics and Computer Vision J. E. Besanqon 209 The NET Remote Maintenance Programme D. Maisonnier and T. Reeve 243 Color Plates 259 Preface The solution to today's demand for safety in Industrial Processes and Plants involves more and more the use of teleoperated devices to avoid human exposure to hazards. Such hazards occur during operation and maintenance, in normal or accidental conditions, and during decommissioning at the end of the life time of installations. The year 1989 has represented, for Teleoperation, an important landmark with the closure of the first commercial nuclear power stations which have reached the end of their life time.
The use of tritium as a basic fuel material in a thermonuclear fusion reactor raises particular safety issues due to the combined effects of its physicochemical properties and its radioactive nature. Furthermore, the possibility of attaining further significant progress in developing and demonstrating the feasibility of tritium burning devices relies on the handling of tritium macroquantities, say tens of grams, in a safe and reliable manner. It is also certain that, apart from technological constraints, any validation and exploitation of thermonuclear fusion as a source of energy will be strongly conditioned by the application of stringent operational and environmental safety criteria derived from the norms of modern legislation and public acceptance considerations. This publication illustrates the most prominent safety aspects associated with the safe operation, maintenance and experimental utilization of a tritium handling facility. Besides the need for safe and reliable systems for tritium containment, monitoring and storage, particular attention is devoted to problems linked with tritium--material interaction and tritium processing, according to the different options applicable both to the tritium handling laboratory and future fusion devices. Selected topics, such as biological hazard, dosimetry, radiological protection and environmental safety are reviewed with particular attention to implications for operators and general public. Finally, outstanding experience gained during the recent JET operation and after many years of dismantling tritiated facilities at CEN--Valduc are illustrated. The book is principally addressed to scientists concerned with tritium R&D activities, as well as to designers and operators of tritium handling plants.
The first part of the conference explores two major environmental concerns that arise from fuel use: (1) the prospect that the globe will become warmer as a result of emissions of carbon dioxide, and (2) the effect upon health of the fine particles emitted as combustion products. The conference focused on the fact that there was lack of data direct enough to enable us to predict an entirely satisfactory result, and that makes policy options particularly difficult. With regard to (1) above, in the second half of the 20th century there were major increases in anthropogenic C02 emissions, and it is generally agreed that these were responsible for an increase in C02 concentrations. But the relationship between global temperature and CO2 concentrations remains murky. The principal problem is that water vapor is a more important greenhouse gas than C02 and that the concentrations of water vapor vary widely in time and space. The approach to this problem is probably, but not certainly, a positive feedback effect: as temperature increases so does the water vapor leading to further temperature increases. Scientists associated with the Intergovernmental Panel on Climate Change (IPCC) tend to believe the general features of the models. Other scientists are often less convinced.
A IUTAM symposium on 'Waves in Liquid/Gas and Liquid/Vapor Two-Phase Systems' was held in Kyoto, Japan, 9-13 May 1994. Sixty-three scientists partici pated coming from ten countries, and forty-two lectures were presented. The list of participants and the program are included in this volume. The symposium was held in response to the request of the participants in the IUTAM symposium 'Adiabatic Waves in Liquid-Vapor System' held at Gottingen in 1989. At that time, the need for another symposium in about five years had been indicated by all the participants. This symposium intends to develop the subject of wave properties in more general liquid-gas two-phase systems. Topics in this symposium may be classified as (1) waves in liquid-gas bubble systems including interfacial effects, (2) waves in gas( vapor )-droplets systems, (3) waves in films or stratified systems, (4) waves with liquid-vapor transition, (5) waves with vapor-liquid transition, (6) wave propagation near the critical point and (7) waves with low pressure effect. As for topic (1), experiments, numerical simulations and analytical approaches to waves in bubly liquids were discussed. The importance of interbubble interactions through the liquid-field is now well established at least in terms of potential theory. There was also a progress concerning the well-posedness of governing equations for void waves. For pressure waves there were some new phenomena, such as bubble cluster formation and the occurrence of three-dimensional structures, in addition to a progress from more qualitative studies to quantitative ones."
The Editors have pleasure in presenting a further volume in the se ries to our international audience. Perhaps the most significant event of the passing year has been the publication by the IAEA of its study of the prob lem of continuing radiation protection in the lands surrounding Chernobyl. The major international project undertaken in 1990 and reported in 1991 is worth reading, not only for its assessment of how radiation protection intervention should be applied de facto in accident conditions, but equally for its account of the modern view of the philosophy of radiation protection. Some would, however, wish to argue that the acknowledgement by Iraq of its three-pronged development of nuclear weapons in conditions of secrecy and antagonism was equally significant and indeed as much a deter minant of the future of peaceful nuclear power as the Chernobyl accident. But it must be clear that the developments of weapons and electricity pro duction are not inescapably bound together; the Iraqi weapons program was not linked to any peaceful power development.
This conference proceedings explores issues surrounding the replacement of existing nuclear power plants when they reach the end of their useful life. Topics covered include: Nuclear competitiveness regarding politics and power plant evolution; social acceptance regarding communication, information, waste, and safety proliferation; and durability regarding resources and effects on the environment.
This volume contains the proceedings of an International Conference on "Spin and Isospin in Nuclear Interactions," which was held in Telluride, Colorado USA, 11-15 March 1991. This was the fifth in a series of conferences held in Telluride every three years since 1979. In attendance at the conference were just under 100 participants, representing a total of 43 institutes from 12 different countries. In keeping with previous Telluride conferences, the role of spin and isospin degrees of freedom in both nuclear structure and nuclear interactions remained an important theme. Topics covered included new results on the spin- and isospin-dependent terms in the free and effective nucleon-nucleon interaction, Gamow-Teller excitations, charge and spin exchange with hadronic probes, and spin measurements with leptonic probes. Recent progress in the development of polarized sources, polarized targets, and po larimetry was also discussed, as were applications to neutrino physics and astrophysics. Whereas earlier Telluride conferences had dealt primarily with nucleon-nucleus inter actions, this meeting included extensive discussions on the role of spin and flavor in particle interactions, and on ways of "bridging the gap" between concepts usually as sociated with particle physics and the domain of more conventional nuclear physics. The conference consisted of morning and evening scientific sessions, leaving the afternoons free for informal discussions, recreation, and enjoyment of the scenic beauty of the Telluride area. In addition to the invited talks, time was allotted for contributed talks on new results."
The mathematical technique of Monte Carlo, as applied to the transport of sub-atomic particles, has been described in numerous reports and books since its formal development in the 1940s. Most of these instructional efforts have been directed either at the mathematical basis of the technique or at its practical application as embodied in the several large, formal computer codes available for performing Monte Carlo transport calculations. This book attempts to fill what appears to be a gap in this Monte Carlo literature between the mathematics and the software. Thus, while the mathematical basis for Monte Carlo transport is covered in some detail, emphasis is placed on the application of the technique to the solution of practical radiation transport problems. This is done by using the PC as the basic teaching tool. This book assumes the reader has a knowledge of integral calculus, neutron transport theory, and Fortran programming. It also assumes the reader has available a PC with a Fortran compiler. Any PC of reasonable size should be adequate to reproduce the examples or solve the exercises contained herein. The authors believe it is important for the reader to execute these examples and exercises, and by doing so to become accomplished at preparing appropriate software for solving radiation transport problems using Monte Carlo. The step from the software described in this book to the use of production Monte Carlo codes should be straightforward.
The management and disposal of radioactive wastes are key international issues requiring a sound, fundamental scientific basis to insure public and environmental protection. Large quantities of existing nuclear waste must be treated to encapsulate the radioactivity in a form suitable for disposal. The treatment of this waste, due to its extreme diversity, presents tremendous engineering and scientific challenges. Geologic isolation of transuranic waste is the approach currently proposed by all nuclear countries for its final disposal. To be successful in this endeavor, it is necessary to understand the behavior of plutonium and the other actinides in relevant environmental media. Conceptual models for stored high level waste and waste repository systems present many sCientific difficulties due to their complexity and non-ideality. For example, much of the high level nuclear waste in the US is stored as alkaline concentrated electrolyte materials, where the chemistry of the actinides under such conditions is not well understood. This lack of understanding limits the successful separation and treatment of these wastes. Also, countries such as the US and Germany plan to dispose of actinide bearing wastes in geologic salt deposits. In this case, understanding the speciation and transport properties of actinides in brines is critical for confidence in repository performance and risk assessment activities. Many deep groundwaters underlying existing contaminated sites are also high in ionic strength. Until recently, the scientific basis for describing actinide chemistry in such systems was extremely limited."
In this global wake-up call, nuclear physicist Jeff Eerkens explores remedies for the impending energy crisis, when oil and natural gas are depleted. The Nuclear Imperative demonstrates that solar, wind, and biomass power are incapable of supplying the enormous quantities of electricity and heat needed for manufacturing portable synthetic fuels to replace our current use of fossil fuels. It offers a fresh look at uranium-produced energy as the optimal affordable solution.
All significant studies agree that aqueous corrosion continues to cost nations dearly in almost every area of technological endeavour. Over the past ten years, microcomputers have facilitated an explosion in the power of modelling as a technique in science and engineering. In corrosion they have enabled better understanding of polarization curves, they have transformed the scope of electrochemical impedance measurements and they have placed a large range of electrochemistry at the fingertips of the corrosion scientist. This book focuses on the models, rather than the computing, which have been made possible during the past decade. Aimed at all those with an interest in corrosion and its control, the book draws together the range of new modelling strands, suggests new avenues of approach and generates further momentum for improvements to corrosion management, whether by increased understanding of atomistic processes or by control of large plant.
Modern nuclear physics is a well developed branch of physical science, with wide-ranging applications of its results in engineering and industry. At the same time, the development of a consistent theory of nuclei and nuclear processes presents certain problems. It is well known that the most important aim of nuclear physics is the study of nuclear structure and the explanation of properties on the basis of the interaction between nucleons which constitute nuclei. Difficulties of a modern theory of the nucleus are caused by both an insufficient knowledge of nuclear interactions and the multi particle character of nuclear systems. Experimental data on nuclear interactions do not contradict the hypothesis of the pair character of nuclear forces. However, the absence of rigorous meth ods of calculations of many particle nuclear systems with strong interaction makes it necessary to use macroscopic nuclear models to describe particular nuclear properties. Nuclear models have been developed in different ways, and the models themselves have been modified and complicated. In spite of the visible discrepancy, different models of the nucleus significantly supple ment one another. The development of nuclear models has led to considerable progress in the understanding of atomic nuclei. The current results of theo retical nuclear physics are reported in numerous scientific papers. The most important and relevant experimental and theoretical results can be found in many monographs, the best of which are written by well-known experts in the field."
TIlls book is the result of an effort made by several members of the Euratom Neutron Radiography Working Group (NRWG) to produce a new, revised and enlarged edition of the Neutron Radiography Handbooldlj (NRH), written by members of the NRWG and published in 1981, just before the First World Conference on Neutron Radiography (WCNR) (1981). Members of the NRWG have contributed with many papers both to the first (1981)[2), as well as the second (1986)[3) and third (1989) [4) World Conference on Neutron Radiography (WCNR). They were also among the editors of the proceedings of those conferences (1982, 1987, 1990). The NRWG was constituted mainly for the purpose of promoting neutron radiography (NR) in the field of nuclear reactor fuel. Therefore the next topical publication of the NRWG were Reference Neutron Radiographs of Nuclear Reactor Fuel (1984)[5). The book on Collimators for y Thermal Neutron Radiograph 6/ written in 1987 by a member of the NRWG was another publication in the same series of books on NR. To the same series belongs the present book on Practical Neutron Radiography (PNR). It will be followed soon by another book written by the members of the NRWG: Neutron Radiography on Nitrocellulose Filmf71. The NRWG concentrated its interest in the past years on the problem of dimensional measurements from neutron radiographs. The results of the investigation of this problem were summarized in a special EUR report about the Neutron Radiography Working Group Test Program[8/ published in 1989.
Nuclear Engineering Mathematical Modeling and Simulation presents the mathematical modeling of neutron diffusion and transport. Aimed at students and early career engineers, this highly practical and visual resource guides the reader through computer simulations using the Monte Carlo Method which can be applied to a variety of applications, including power generation, criticality assemblies, nuclear detection systems, and nuclear medicine to name a few. The book covers optimization in both the traditional deterministic framework of variational methods and the stochastic framework of Monte Carlo methods. Specific sections cover the fundamentals of nuclear physics, computer codes used for neutron and photon radiation transport simulations, applications of analyses and simulations, optimization techniques for both fixed-source and multiplying systems, and various simulations in the medical area where radioisotopes are used in cancer treatment. |
You may like...
Fundamentals of CANDU Reactor Physics
Wei Shen, Benjamin Rouben
Hardcover
R2,425
Discovery Miles 24 250
International Cooperation for Enhancing…
Luciano Maiani, Raymond Jeanloz, …
Hardcover
R1,419
Discovery Miles 14 190
Resilience - A New Paradigm of Nuclear…
Joonhong Ahn, Franck Guarnieri, …
Hardcover
R1,572
Discovery Miles 15 720
Global Nuclear Developments - Insights…
Pantelis F. Ikonomou
Hardcover
R3,274
Discovery Miles 32 740
International Cooperation for Enhancing…
Luciano Maiani, Wolfango Plastino, …
Hardcover
R1,416
Discovery Miles 14 160
The Technological and Economic Future of…
Amela Ajanovic, Lutz Mez, …
Hardcover
R1,632
Discovery Miles 16 320
|