![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Energy technology & engineering > Nuclear power & engineering
This revised book covers the fundamentals of thermodynamics required to understand electrical power generation systems, honing in on the application of these principles to nuclear reactor power systems. This text treats the fundamentals of thermodynamics from the perspective of nuclear power systems. In addition to the Four Laws of Thermodynamics, it discusses Brayton and Rankine power cycles in detail with an emphasis on how they are implemented in nuclear systems. Chapters have been brought up-to-date due to significant new results that have become available for intercooled systems and combined cycles and include an updated steam table. The book starts with basic principles of thermodynamics as applied to power plant systems. It then describes how Nuclear Air-Brayton systems will work. It documents how they can be designed and the expected ultimate performance. It describes several types of Nuclear Air-Brayton systems that can be employed to meet different requirements and estimates component sizes and performance criteria for Small Modular Reactors (SMR) based on the Air-Brayton concept. The book provides useful insight into the engineering of nuclear power systems for students and the tabular data will be of great use to practicing engineers.
This book focuses on the issue of 'resurgence of nuclear power' and discusses the feasibility of nuclear in the energy mix of Asian economies. It discusses nuclear energy sector in detail in the context of India, a country where currently overseas supply of hydrocarbon fuels plays a major role in meeting the domestic energy needs. The book presents an in-depth analysis of nuclear energy policy as well as regional and global politics surrounding the nuclear industry, and the relevance of nuclear energy from the low-carbon energy perspective. To do so, it explores three different perspectives. To start with, the resurgence of nuclear power is discussed from a global energy perspective to understand whether and how it has been increasingly gaining policy attention among Asian economies. Secondly, it highlights the role of nuclear power in Asia and examines how the collaboration with the global nuclear sector is influencing that role. While the epicentre of nuclear power growth can be seen shifting to the Global East, there is a growing need for strengthening the industry, its legal and regulatory infrastructure and knowledge management. The third perspective focuses on the challenges and opportunities for the nuclear power industry and explores, to what extent the public perception is in favor of nuclear sector in the region. The perceived risks of nuclear power, public perception related to legal and regulatory issues, and concerns regarding land acquisition for nuclear facilities are also discussed. The book contains contributions from specialists in the global energy and nuclear sector, and examines some of the most sought-after topics related to the energy policy studies, especially in the Asian context.
This book provides a systematic and comprehensive introduction to fusion neutronics, covering all key topics from the fundamental theories and methodologies, as well as a wide range of fusion system designs and experiments. It is the first-ever book focusing on the subject of fusion neutronics research. Compared with other nuclear devices such as fission reactors and accelerators, fusion systems are normally characterized by their complex geometry and nuclear physics, which entail new challenges for neutronics such as complicated modeling, deep penetration, low simulation efficiency, multi-physics coupling, etc. The book focuses on the neutronic characteristics of fusion systems and introduces a series of theories and methodologies that were developed to address the challenges of fusion neutronics. Further, it introduces readers to the unique principles and procedures of neutronics design, experimental methodologies and methodologies for fusion systems. The book not only highlights the latest advances and trends in the field, but also draws on the experiences and skills collected in the author's more than 40 years of research. To make it more accessible and enhance its practical value, various representative examples are included to illustrate the application and efficiency of the methods, designs and experimental techniques discussed.
The book comprehensively covers the various aspects of risk modeling and analysis in technological contexts. It pursues a systems approach to modeling risk and reliability concerns in engineering, and covers the key concepts of risk analysis and mathematical tools used to assess and account for risk in engineering problems. The relevance of incorporating risk-based structures in design and operations is also stressed, with special emphasis on the human factor and behavioral risks. The book uses the nuclear plant, an extremely complex and high-precision engineering environment, as an example to develop the concepts discussed. The core mechanical, electronic and physical aspects of such a complex system offer an excellent platform for analyzing and creating risk-based models. The book also provides real-time case studies in a separate section to demonstrate the use of this approach. There are many limitations when it comes to applications of risk-based approaches to engineering problems. The book is structured and written in a way that addresses these key gap areas to help optimize the overall methodology. This book serves as a textbook for graduate and advanced undergraduate courses on risk and reliability in engineering. It can also be used outside the classroom for professional development courses aimed at practicing engineers or as an introduction to risk-based engineering for professionals, researchers, and students interested in the field.
The pursuit of nuclear fusion as an energy source requires a broad knowledge of several disciplines. These include plasma physics, atomic physics, electromagnetics, materials science, computational modeling, superconducting magnet technology, accelerators, lasers, and health physics. Nuclear Fusion distills and combines these disparate subjects to create a concise and coherent foundation to both fusion science and technology. It examines all aspects of physics and technology underlying the major magnetic and inertial confinement approaches to developing nuclear fusion energy. It further chronicles latest developments in the field, and reflects the multi-faceted nature of fusion research, preparing advanced undergraduate and graduate students in physics and engineering to launch into successful and diverse fusion-related research. Nuclear Fusion reflects Dr. Morse's research in both magnetic and inertial confinement fusion, working with the world's top laboratories, and embodies his extensive thirty-five year career in teaching three courses in fusion plasma physics and fusion technology at University of California, Berkeley.
This book addresses the topic of fractional-order modeling of nuclear reactors. Approaching neutron transport in the reactor core as anomalous diffusion, specifically subdiffusion, it starts with the development of fractional-order neutron telegraph equations. Using a systematic approach, the book then examines the development and analysis of various fractional-order models representing nuclear reactor dynamics, ultimately leading to the fractional-order linear and nonlinear control-oriented models. The book utilizes the mathematical tool of fractional calculus, the calculus of derivatives and integrals with arbitrary non-integer orders (real or complex), which has recently been found to provide a more compact and realistic representation to the dynamics of diverse physical systems. Including extensive simulation results and discussing important issues related to the fractional-order modeling of nuclear reactors, the book offers a valuable resource for students and researchers working in the areas of fractional-order modeling and control and nuclear reactor modeling.
In the world market of power-producing nuclear reactors, there is growing interest in small and medium sized or modular reactors (SMRs). These can be assembled in-factory, transported by ship or train, installed on site and connected to the electricity grid in a short time, significantly reducing the financial burden of the investment. This publication, which is the outcome of a technical meeting, presents a detailed overview of the different concepts of fast SMRs and highlights the technological, economic and safety potential of these reactors and the associated innovative systems. Although it is mainly focused on innovative reactor solutions aimed to increase safety and simplicity of design, the parameters that contribute to the final cost of the plant are also considered.
This publication provides guidance to States and their competent authorities on how to implement and maintain a physical protection regime for transport of nuclear material. It will also be useful to shippers or carriers in the design and implementation of their physical protection systems. The publication builds upon IAEA Nuclear Security Series No. 13, Nuclear Security Recommendations on Physical Protection of Nuclear Material and Nuclear Facilities (INFCIRC/225/Revision 5), and provides additional guidance on how to implement these recommendations in practice.
This book presents a comprehensive overview of the computerized core monitoring techniques currently employed at pressurized water reactor (PWR) and boiling water reactor (BWR) nuclear power plants. It also offers a brief overview of the corresponding techniques at research and materials testing reactors. The book combines detailed descriptions of the theoretical background and fundamental underlying principles as well as the practical applications of core surveillance. It not only provides numerous industrial examples to illustrate how complex computerized systems are able to support the safe operation of nuclear reactors, but also outlines some new application areas that were made possible only by state-of-the-art computing resources. Thanks to its practical approach, it serves as a valuable and practical reference book for readers interested in the surveillance of nuclear reactors, ranging from undergraduate and postgraduate students to researchers and experts working at research reactors and nuclear power plants, as well as at nuclear regulatory authorities. These proceedings present the latest information on software reliability, industrial safety, cyber security, physical protection, testing and verification for nuclear power plants. The papers were selected from more than 80 submissions and presented at the First International Symposium on Software Reliability, Industrial Safety, Cyber Security and Physical Protection for Nuclear Power Plants, held in Yinchuan, China on May 30 - June 1, 2016. The primary aim of this symposium was to provide a platform to facilitate the discussion for comprehension, application and management of digital instrumentation, control systems and technologies in nuclear power plants. The book reflects not only the state of the art and latest trends in nuclear instrumentation and control system technologies, but also China's increasing influence in this area. It is a valuable resource for both practitioners and academics working in the field of nuclear instrumentation, control systems and other safety-critical systems, as well as nuclear power plant managers, public officials and regulatory authorities.
This book covers the principles and practices behind the Magnetic Confinement Fusion (MCF) approach to driven new source of energy. All possible technical methods, including well established theoretical research, as well as findings tested in an experimental tokamak reactor, are examined in order to determine how to best achieve breakeven via this pathway to plasma-driven fusion. The author undertakes a life cycle analysis to compare and contrast the efficiency, environmental impacts, and operating costs of plasma-driven MCF fusion against other forms of energy generation currently in widespread use. The associated computer code and numerical analysis are included in the book. No prior knowledge of MCF and no more than basic background in plasma physics is required.
As a flexible, cost-effective energy alternative to large scale nuclear power reactors, this book examines the potential future use of small modular reactors for the generation of electricity in different regions. Exploring advanced nuclear technologies, chapters describe the current situation and perspective of the small modular reactors market (SMRs) in different regions around the word, including North and South America, Europe, Asia, Middle East and Africa. Particular attention is paid to the benefits of using these types of reactors for the generation of electricity, discussing their efficiency and reduced construction time, as well as exploring the main difficulties encountered in the development stage. Looking at the potential dangers that SMRs pose to the environment and population, the text presents the new safety measures that have been adopted in SMRs design to reduce future risk.
Rising operating costs and increased competition have focused attention on the need to improve thermal performance in nuclear power plants (NPPs), to ensure efficient electricity generation. Efforts to improve thermal performance require a broad understanding of NPP design, operation, maintenance, ambient conditions, and thermal sciences. This publication provides various methodologies for tracking and trending NPP thermal performance. It describes the essential elements of a thermal performance programme, providing guidelines on the design of the balance of the plant systems for new build NPPs and improvements to an existing programme for operating NPPs.
This book provides extensive and comprehensive knowledge to the researchers/academics who are working in the field of cesium contaminated sites, and the impact on plants. This book is also helpful for graduate and undergraduate students who are specializing in radioecology or safe disposal of radioactive waste, remediation of legacies and the impact on the environment. Radiocesium (137Cs and 134Cs) was released into the environment as a result of nuclear weapons testing in 1950s and 1960s (~1x1018 Bq), and later due to the Chernobyl accident in 1986 (8.5x1016 Bq) and Fukushima Daiichi Nuclear Power Plant in 2011 (~1x1017 Bq). 137Cs is still of relevance due to its half-life of 30 years. The study of radioisotope 137Cs is important, as production and emission rates are high compared to other radioisotopes, due to high fission yield and high volatility. This book contains original work and reviews on how cesium is released into the environment on translocation from soil to plants and further on to animals and into the human food chain. Separate chapters focus on the effective half-life of cesium in plants and on how different cultivars are responding in accumulation of cesium. Other key chapters focus on cesium impact on single cells to higher plants and also on remediation measures as well as on basic mechanism used for remedial options and analysis of transfer factors. The book rounds off by contributions on cesium uptake and translocation and its toxicity in plants after the Chernobyl and Fukushima accidents.
This revised text covers the fundamentals of thermodynamics required to understand electrical power generation systems and the application of these principles to nuclear reactor power plant systems. The book begins with fundamental definitions of units and dimensions, thermodynamic variables and the Laws of Thermodynamics progressing to sections on specific applications of the Brayton and Rankine cycles for power generation and projected reactor systems design issues. It is not a traditional general thermodynamics text, per se, but a practical thermodynamics volume intended to explain the fundamentals and apply them to the challenges facing actual nuclear power plants systems, where thermal hydraulics comes to play. There have been significant new findings for intercooled systems since the previous edition published and they will be included in this volume. New technology plans for using a Nuclear Air-Brayton as a storage system for a low carbon grid are presented along with updated component sizes and performance criteria for Small Modular Reactors. Written in a lucid, straight-forward style while retaining scientific rigor, the content is accessible to upper division undergraduate students and aimed at practicing engineers in nuclear power facilities and engineering scientists and technicians in industry, academic research groups, and national laboratories. The book is also a valuable resource for students and faculty in various engineering programs concerned with nuclear reactors.
This book covers the entire spectrum of the science and technology of nuclear reactor systems, from underlying physics, to next generation system applications and beyond. Beginning with neutron physics background and modeling of transport and diffusion, this self-contained learning tool progresses step-by-step to discussions of reactor kinetics, dynamics, and stability that will be invaluable to anyone with a college-level mathematics background wishing to develop an understanding of nuclear power. From fuels and reactions to full systems and plants, the author provides a clear picture of how nuclear energy works, how it can be optimized for safety and efficiency, and why it is important to the future.
This book covers the basic principles of both fusion and plasma physics, examining their combined application for driving controlled thermonuclear energy. The author begins by explaining the underlying scientific theory, and then goes on to explore the nuances of deployment within thermonuclear reactors. The potential for these technologies to help shape the new generation of clean energy is examined in-depth, encompassing perspectives both highlighting benefits, and warning of challenges associated with the nuclear fusion pathway. The associated computer code and numerical analysis are included in the book. No prior knowledge of plasma physics or fusion is required.
This book discusses important fundamentals of radiation safety with specific details on dose units, calculations, measuring, and biological effects of ionizing radiation. The author covers different exposure situations and their requirements, and relevant legislation and regulations governing radiation safety. The book also examines radioactive waste management, the transport of radioactive materials, emergency planning and preparedness and various examples of radiation protection programs for industrial, medical, and academic applications.
This monograph presents a systematic analysis of bubble system mathematics, using the mechanics of two-phase systems in non-equilibrium as the scope of analysis. The author introduces the thermodynamic foundations of bubble systems, ranging from the fundamental starting points to current research challenges. This book addresses a range of topics, including description methods of multi-phase systems, boundary and initial conditions as well as coupling requirements at the phase boundary. Moreover, it presents a detailed study of the basic problems of bubble dynamics in a liquid mass: growth (dynamically and thermally controlled), collapse, bubble pulsations, bubble rise and breakup. Special emphasis is placed on bubble dynamics in turbulent flows. The analysis results are used to write integral equations governing the rate of vapor generation (condensation) in non-equilibrium flows, thus creating a basis for solving a number of practical problems. This book is the first to present a comprehensive theory of boiling shock with applications to problems of critical discharge and flashing under the fast decompression conditions. Reynolds' analogy was the key to solving a number of problems in subcooled forced-flow boiling, the theoretical results of which led to easy-to-use design formulas. This book is primarily aimed at graduate and post-graduate students specializing in hydrodynamics or heat and mass transfer, as well as research expert focused on two-phase flow. It will also serve as a comprehensive reference book for designers working in the field of power and aerospace technology.
This book is published open access under a CC BY 4.0 license. This book summarizes presentations and discussions from the two-day international workshop held at UC Berkeley in March 2015, and derives questions to be addressed in multi-disciplinary research toward a new paradigm of nuclear safety. The consequences of the Fukushima Daiichi nuclear accident in March 2011 have fuelled the debate on nuclear safety: while there were no casualties due to radiation, there was substantial damage to local communities. The lack of common understanding of the basics of environmental and radiological sciences has made it difficult for stakeholders to develop effective strategies to accelerate recovery, and this is compounded by a lack of effective decision-making due to the eroded public trust in the government and operators. Recognizing that making a society resilient and achieving higher levels of safety relies on public participation in and feedback on decision-making, the book focuses on risk perception and mitigation in its discussion of the development of resilient communities.
This book takes a holistic approach to plasma physics and controlled fusion via Inertial Confinement Fusion (ICF) techniques, establishing a new standard for clean nuclear power generation. Inertial Confinement Fusion techniques to enable laser-driven fusion have long been confined to the black-box of government classification due to related research on thermonuclear weapons applications. This book is therefore the first of its kind to explain the physics, mathematics and methods behind the implosion of the Nd-Glass tiny balloon (pellet), using reliable and thoroughly referenced data sources. The associated computer code and numerical analysis are included in the book. No prior knowledge of Laser Driven Fusion and no more than basic background in plasma physics is required.
This book describes recent technological developments in next generation nuclear reactors that have created renewed interest in nuclear process heat for industrial applications. The author's discussion mirrors the industry's emerging focus on combined cycle Next Generation Nuclear Plants' (NGNP) seemingly natural fit in producing electricity and process heat for hydrogen production. To utilize this process heat, engineers must uncover a thermal device that can transfer the thermal energy from the NGNP to the hydrogen plant in the most performance efficient and cost effective way possible. This book is written around that vital quest, and the author describes the usefulness of the Intermediate Heat Exchanger (IHX) as a possible solution. The option to transfer heat and thermal energy via a single-phase forced convection loop where fluid is mechanically pumped between the heat exchangers at the nuclear and hydrogen plants is presented, and challenges associated with this tactic are discussed. As a second option, heat pipes and thermosyphons, with their ability to transport very large quantities of heat over relatively long distance with small temperature losses, are also examined.
This new edition presents the essential theoretical and analytical methods needed to understand the recent fusion research of tokamak and alternate approaches. The author describes magnetohydrodynamic and kinetic theories of cold and hot plasmas in detail. The book covers new important topics for fusion studies such as plasma transport by drift turbulence, which depend on the magnetic configuration and zonal flows. These are universal phenomena of microturbulence. They can modify the onset criterion for turbulent transport, instabilities driven by energetic particles as well as alpha particle generation and typical plasma models for computer simulation. The fusion research of tokamaks with various new versions of H modes are explained. The design concept of ITER, the international tokamak experimental reactor, is described for inductively driven operations as well as steady-state operations using non-inductive drives. Alternative approaches of reversed-field pinch and its relaxation process, stellator including quasi-symmetric system, open-end system of tandem mirror and inertial confinement are also explained. Newly added and updated topics in this second edition include zonal flows, various versions of H modes, and steady-state operations of tokamak, the design concept of ITER, the relaxation process of RFP, quasi-symmetric stellator, and tandem mirror. The book addresses graduate students and researchers in the field of controlled fusion.
This book lays the foundations for you to understand all that you always wanted to know about radioactivity. It begins by setting out essential information about the structure of matter, how radiation occurs and how it can be measured. It goes on to explore the substantial benefits of radioactivity through its many applications, and also the possible risks associated with its use. The field of radioactivity is explained in layman's terms, so that everybody who is interested can improve their understanding of issues such as nuclear power, radiation accidents, medical applications of radiation and radioactivity from the environment. Everything is radioactive. There is natural radioactivity in the homes that we live in, the food that we eat and the air that we breath. For over 100 years, people have recognised the potential for radioactivity to help solve problems and improve our standard of living. This has led to the creation of radioactivity levels in some places that are much higher than naturally-occurring background levels. Such high levels of radiation can be harmful to people and the environment, so there is a clear need to manage this potential harm and to make the risk worth the benefits mankind can achieve from radioactive materials. |
You may like...
Family Matters - Family Cohesion…
Zitha Mokomane, Benjamin Roberts, …
Paperback
I Shot Frank Zappa - My Life In…
Robert JH Davidson, John Elliott
Hardcover
R736
Discovery Miles 7 360
|