Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Energy technology & engineering > Nuclear power & engineering
This book is aimed at scientists and engineers wanting to use radioisotopes and the emitted ionising radiations competently but without seeking expertise. It describes decay and stability criteria, necessary precautions to ensure radiation protection and the detection of alpha, beta and gamma rays including spectrometry. There are comments on calorimetry, liquid scintillation counting, how to use secondary standard instruments, high resolution detectors and how to calculate counting results estimating uncertainties and allowing for the statistics of radionuclide decays. The book's principal purpose is to encourage radionuclide applications which can be done safely, reliably and accurately. It describes industrial and scientific applications of alpha, beta, and gamma rays, neutrons and high energy radiations. This book will be of particular interest to scientists and technologists, teachers and students, helping them to work with radioisotopes safely, efficiently and reliably.
This book describes repository solutions for all types of radioactive waste and residues in different geotechnical repository structures. The focus is initially on existing or planned final disposal sites in Germany and the process of finding sites. However, international comparisons are drawn, especially to locations in the US. This affects both the repository structures and the legal requirements. The radioactive substances considered include residues from uranium ore processing, as well as low and intermediate level radioactive waste up to heat generating, high level radioactive wastes, such as spent fuel and vitrified waste from reprocessing. In order to evaluate the repository structures and their inventories, a dimensionless radiotoxicity index Ai / Fi [activity of radionuclide quantity (Ai) related to the exemption limit of radionuclide (Fi)] has been introduced. This gives the reader a well-founded overview of the degree of inconsistency in the handling of safety requirements for the respective geotechnical environmental structures. This creates the necessary transparency on this issue, which has not been previously available and is required by stakeholders today. The long-term security, the duration of the observation period and the certainty of the safety prognosis are also discussed in the book as well as the participation of subsequent generations in current and possible future repositories. This is vital as nuclear energy will continue to be used worldwide in the long term. The international repository projects presented have all been subjected to the same evaluation criteria. This applies both to existing operational project as well as those about to be commissioned and the processes for seeking locations. Special attention has been paid to monitoring, both operational and long-term monitoring. This broad range of topics makes this book a very valuable read for both the interested public and the professional world.
Using primarily Russian sources, this book explains the political and economic aspects of nuclear power. The nuclear fuel cycle is described, from the mining of natural uranium to the ultimate power generation, and to reprocessing to produce plutonium which is essential for both electricity generation and for weapons production. Historical aspects of nuclear developments in Germany, the USA, India, China and the Soviet Union are also considered and explained. The book then proceeds to argue that Russia is more powerful today in its nuclear weapons system and delivery than ever before, and that it is precisely this which has provoked President Trump to cancel the strategic nuclear weapons reduction treaty.
This book describes the four Nuclear Security Summits held over 2010-2016 at the initiative of U.S. President Barack Obama. The author draws upon his unique vantage point as a participant in the Summits, exclusive interviews with practitioners, and access to primary documents, to write an engaging history of the NSS and of nuclear security in general. The story of the NSS is also in part the story of multilateral nuclear forums, which have sprung up regularly since the dawn of the nuclear age to address perceived nuclear dangers. The success of these Summits in addressing the threat of nuclear terrorism holds important lessons for the design and work of nuclear forums today and into the future. The author presents a new approach to assessing 'international learning' that has important implications for the design of multilateral forums and updates the Cold War areas of nuclear knowledge being 'learnt' in the light of the NSS experience and other recent developments. This work will be of interest to scholars and practitioners in security studies, nuclear history, and International Relations.
Nuclear Decommissioning Case Studies: Accidental Impacts on Workers, the Environment and the Public, Volume One presents a collection of international case studies that show impacts on workers, the public and the environment. Author Michele Laraia describes typical stages of decommissioning, such as categorization, hazard and risk analysis, and the risks and impacts involved at each stage. Each case is introduced before discussing its impacts, solutions, analysis, and lessons learned. This book uniquely collects, categorizes and compares radiological and non-radiological accidents, incidents and near misses which will be of great value to practitioners in industry and authorities developing nuclear programs. Finally, this book instructs readers on important prevention, mitigation and control measures to create sustainable, safe nuclear facilities.
The book comprehensively covers the various aspects of risk modeling and analysis in technological contexts. It pursues a systems approach to modeling risk and reliability concerns in engineering, and covers the key concepts of risk analysis and mathematical tools used to assess and account for risk in engineering problems. The relevance of incorporating risk-based structures in design and operations is also stressed, with special emphasis on the human factor and behavioral risks. The book uses the nuclear plant, an extremely complex and high-precision engineering environment, as an example to develop the concepts discussed. The core mechanical, electronic and physical aspects of such a complex system offer an excellent platform for analyzing and creating risk-based models. The book also provides real-time case studies in a separate section to demonstrate the use of this approach. There are many limitations when it comes to applications of risk-based approaches to engineering problems. The book is structured and written in a way that addresses these key gap areas to help optimize the overall methodology. This book serves as a textbook for graduate and advanced undergraduate courses on risk and reliability in engineering. It can also be used outside the classroom for professional development courses aimed at practicing engineers or as an introduction to risk-based engineering for professionals, researchers, and students interested in the field.
This second open access volume of the handbook series deals with detectors, large experimental facilities and data handling, both for accelerator and non-accelerator based experiments. It also covers applications in medicine and life sciences. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A,B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access.
This book discusses advanced Small Modular Reactors (SMRs) as a way to provide safe, clean, and affordable nuclear power options. The advanced SMRs currently under development in the U.S. represent a variety of sizes, technology options and deployment scenarios. These advanced reactors, envisioned to vary in size from a couple megawatts up to hundreds of megawatts can be used for power generation, process heat, desalination, or other industrial uses. In-depth chapters describe how advanced SMRs offer multiple advantages, such as relatively small size, reduced capital investment, location flexibility, and provisions for incremental power additions. SMRs also offer distinct safeguards, security and nonproliferation advantages. The authors present a thorough examination of the technology and defend methods by which the new generation of nuclear power plants known as GEN-IV can safely be used as an efficient source of renewable energy. Provides a unique and innovative approach to the implementation of Small Modular Reactor as part of GEN-IV technology; Discusses how Small Modular Reactors (SMRs) can deliver a viable alternative to Nuclear Power Plants (NPPs); Presents an argument defending the need for nuclear power plant as a source of energy, its efficiency and cost effectiveness, as well as safety related issues.
This book presents select proceedings of the International Conference on Future Learning Aspects of Mechanical Engineering (FLAME 2018). The book discusses interdisciplinary areas such as automobile engineering, mechatronics, applied and structural mechanics, bio-mechanics, biomedical instrumentation, ergonomics, biodynamic modeling, nuclear engineering, agriculture engineering, and farm machineries. The contents of the book will benefit both researchers and professionals.
This book provides a systematic and comprehensive introduction to the neutronics of advanced nuclear systems, covering all key aspects, from the fundamental theories and methodologies to a wide range of advanced nuclear system designs and experiments. It is the first-ever book focusing on the neutronics of advanced nuclear systems in the world. Compared with traditional nuclear systems, advanced nuclear systems are characterized by more complex geometry and nuclear physics, and pose new challenges in terms of neutronics. Based on the achievements and experiences of the author and his team over the past few decades, the book focuses on the neutronics characteristics of advanced nuclear systems and introduces novel neutron transport methodologies for complex systems, high-fidelity calculation software for nuclear design and safety evaluation, and high-intensity neutron source and technologies for neutronics experiments. At the same time, it describes the development of various neutronics designs for advanced nuclear systems, including neutronics design for ITER, CLEAR and FDS series reactors. The book not only summarizes the progress and achievements of the author's research work, but also highlights the latest advances and investigates the forefront of the field and the road ahead.
Human Factors in the Nuclear Industry: A Systemic Approach to Safety presents the latest research and studies of human factors in the nuclear industry. It models and highlights scientific and technological foundations before providing practical examples of applications within the nuclear facility of human performance at an individual, group, organization, and system level. Editors Dr. Teperi and Dr. Gotcheva supply concrete models, tools and techniques based on research to provide the reader with knowledge of how to facilitate and support human performance in this dynamic and fast moving safety critical field. Models and case studies are provided to add practical benefits for the reader to apply to their own projects, including user friendly state-of-the-art equipment, fluent work processes for information flow, functional control room resource management, and scope for competence and learning in the work place. This book will benefit nuclear researchers, safety experts, human factors professionals and power plant operators, as well as those with an interest in human factors outside of the nuclear field.
Deterministic Numerical Methods for Unstructured-Mesh Neutron Transport Calculation presents the latest deterministic numerical methods for neutron transport equations (NTEs) with complex geometry, which are of great demand in recent years due to the rapid development of advanced nuclear reactor concepts and high-performance computational technologies. This book covers the wellknown methods proposed and used in recent years, not only theoretical modeling but also numerical results. This book provides readers with a very thorough understanding of unstructured neutron transport calculations and enables them to develop their own computational codes. The fundamentals, numerical discretization methods, algorithms, and numerical results are discussed. Researchers and engineers from utilities and research institutes are provided with examples on how to model an advanced nuclear reactor, which they can then apply to their own research projects and lab settings.
This new streamlined text offers a one-semester treatment of the
essentials of how the fission nuclear reactor works, the various
approaches to the design of reactors, and their safe and efficient
operation. The book includes numerous worked-out examples and
end-of-chapter questions to help reinforce the knowledge presented.
Cold Fusion: Advances in Condensed Matter Nuclear Science provides a concise description of the existing technological approaches in cold fusion or low energy nuclear reaction engineering. It handles the chemistry, physics, materials, and various processes involved in cold fusion, and provides a critical analysis of obtained theoretical and experimental results. The book has a very international appeal with the editor from France and an international pool of chapter authors from academia and industry. This book is an indispensable resource for researchers in academia and industry connected with combustion processes and synthesis all over the world.
A number of IAEA Member States generate relatively small quantities of radioactive waste and/or disused sealed sources in research or in the application of nuclear techniques in medicine and industry. This publication presents a modular approach to the design of waste processing and storage facilities to address the needs of such Member States with a cost effective and flexible solution that allows easy adjustment to changing needs in terms of capacity and variety of waste streams. The key feature of the publication is the provision of practical guidance to enable the users to determine their waste processing and storage requirements, specify those requirements to allow the procurement of the appropriate processing and storage modules and install and eventually operate those modules.
Modelling of Nuclear Reactor Multiphysics: From Local Balance Equations to Macroscopic Models in Neutronics and Thermal-Hydraulics is an accessible guide to the advanced methods used to model nuclear reactor systems. The book addresses the frontier discipline of neutronic/thermal-hydraulic modelling of nuclear reactor cores, presenting the main techniques in a generic manner and for practical reactor calculations. The modelling of nuclear reactor systems is one of the most challenging tasks in complex system modelling, due to the many different scales and intertwined physical phenomena involved. The nuclear industry as well as the research institutes and universities heavily rely on the use of complex numerical codes. All the commercial codes are based on using different numerical tools for resolving the various physical fields, and to some extent the different scales, whereas the latest research platforms attempt to adopt a more integrated approach in resolving multiple scales and fields of physics. The book presents the main algorithms used in such codes for neutronic and thermal-hydraulic modelling, providing the details of the underlying methods, together with their assumptions and limitations. Because of the rapidly expanding use of coupled calculations for performing safety analyses, the analysists should be equally knowledgeable in all fields (i.e. neutron transport, fluid dynamics, heat transfer). The first chapter introduces the book's subject matter and explains how to use its digital resources and interactive features. The following chapter derives the governing equations for neutron transport, fluid transport, and heat transfer, so that readers not familiar with any of these fields can comprehend the book without difficulty. The book thereafter examines the peculiarities of nuclear reactor systems and provides an overview of the relevant modelling strategies. Computational methods for neutron transport, first at the cell and assembly levels, then at the core level, and for one-/two-phase flow transport and heat transfer are treated in depth in respective chapters. The coupling between neutron transport solvers and thermal-hydraulic solvers for coarse mesh macroscopic models is given particular attention in a dedicated chapter. The final chapter summarizes the main techniques presented in the book and their interrelation, then explores beyond state-of-the-art modelling techniques relying on more integrated approaches.
Nuclear Waste Management Strategies: An International Perspective presents worldwide insights into nuclear waste management strategies from a technical engineering perspective, with consideration for important legal aspects. It provides a one-stop, comprehensive analysis of both historical and up-to-date nuclear waste management strategies, while consulting important legal aspects of decision-making and implementation processes. With case studies from around the world, this book provides a unique understanding of nuclear waste management technologies and methods available, ensuring that researchers and engineering professionals are equipped with the right knowledge to design, build, implement and improve their own waste management strategies. This book will benefit those researching and learning in the nuclear energy sector, especially those specializing in nuclear waste management strategies, as well as technical and legal communities within nuclear and environmental areas. It is also a valuable resource for lawmakers and regulatory bodies concerned with nuclear policy and waste management.
This is a paperback edition of Professor Walker's full-scale examination of the German efforts to harness the economic, military and political power of nuclear fission between 1939 and 1949. It argues that the German decision not to attempt the production of nuclear weapons during World War II came as a result of economic and political developments, not scientific or moral considerations, and was at the time a perfectly reasonable policy. Professor Walker also places nuclear fission research in the contexts of the war effort and German cultural imperialism, including the plunder and exploitation of "Greater Germany," the German slave labor economy, and the ambivalent interaction between the Nazi party and the German physicists. The book begins at the height of the Empire, and carries the story through to the founding of the two postwar republics in order to emphasize continuity before and after the Third Reich, and to compare the scientists' activity during the war and after the shock of Hiroshima and the Nuremberg trials. Throughout, Professor Walker explains clearly, in terms that the non-specialist can understand, what was involved in the Germans' quest, and in what ways the German scientists succeeded or failed in the development of "the bomb."
This book offers a comprehensive overview of the reprocessing of spent nuclear fuels, and discusses the applications of radiation, particularly spallation neutrons and gamma rays. The unspent nuclear fuel of a reactor amounts to roughly 95 per cent of the loaded fuel. It contains both fertile and fissile fuels, minor and higher actinides and radioactive fission products. In 2015, out of approximately 4 million metric tons of spent fuel, only 90,000 metric tons was reprocessed worldwide; the rest was either sent to repositories, kept for cooling down, or put on a waiting list for future reprocessing. With regard to the direct reutilization of spent nuclear fuel, the new technique of 'Energy Amplifiers' has attracted considerable attention among the nuclear energy community. Presenting extensive information on this technique, the book is divided into eight major sections: (i) spent nuclear fuel and alternative transmutation methods, (ii) general concept of accelerator-driven subcritical systems (ADSS), (iii) spallation neutron sources and the possibility of incineration, (iv) requirements for nuclear data, (v) transmutation of spent nuclear fuel and extension of the fuel cycle, (vi) spallation neutron production facilities, (vii) major experimental facilities for ADSS, and (viii) software tools for the design and modelling of ADSS. The book is ideally suited as a textbook for graduate students as well as a reference guide for researchers and practitioners.
The history of mankind is a story of ascent to unprecedented levels of comfort, productivity and consumption, enabled by the increased mastery of the basic reserves and flows of energy. This miraculous trajectory is confronted by the consensus that anthropogenic emissions are harmful and must decrease, requiring de-carbonization of the energy system. The mature field of indicator-based sustainability assessment provides a rigorous systematic framework to balance the pros and cons of the various existing energy technologies using lifecycle assessments and weighting criteria covering the environment, economy, and society, as the three pillars of sustainability. In such a framework, nuclear power is ranked favorably, but since emphasis is often placed on radioactive wastes and risk aversion, renewables are usually ranked top. However, quantifying the severity of the consequences of nuclear accidents on a rough integral cost basis and balancing severity with low core-damage accident probabilities indicates that the average external cost of such accidents is similar to that of modern renewables, and far less than carbon-based energy. This book formulates the overall goal and associated unprecedented demanding criteria of taming nuclear risks by excluding mechanisms that lead to serious accidents and avoiding extremely long stewardship times as far as possible, by design. It reviews the key design features of nuclear power generation, paving the way for the exploration of radically new combinations of technologies to come up with "revolutionary" or even "exotic" system designs. The book also provides scores for the selected designs and discusses the high potential for far-reaching improvements, with small modular lines of the best versions as being most attractive. Given the ambition and challenges, the authors call for an urgent increase in funding of at least two orders of magnitude for a broad international civilian "super-Apollo" program on nuclear energy systems. Experience indicates that such investments in fundamental technologies enable otherwise unattainable revolutionary innovations with massive beneficial spillovers to the private sector and the public for the next generations.
The book offers the first systematic account of Iran's foreign policy following the nuclear agreement (JCPOA) of July 14, 2015. The author evaluates in what ways the JCPOA, in conjunction with the dramatic changes taking shape in the international order, have affected Iran's foreign policy. Known as Normalizers, the moderate leadership under President Hassan Rouhani had planned to normalize Iran's foreign relations by curtailing terrorism and reintegrate Iran into the community of nations. Their hardline opponents, the Principalists, rejected the JCPOA as a tool of subjection to the West and insisted on exporting the Islamist revolution, a source of much destabilization and terror in the region and beyond. The project also analyzes the struggle between Normalizers and their hardline opponents with regards to global and regional issues and Iran's foreign policy towards global powers including the U.S., Russia, EU, and regional countries including Iraq, Syria, Israel, Saudi Arabia and Turkey.
This book highlights Small Modular Reactors (SMRs) as a viable alternative to the Nuclear Power Plants (NPPs), which have been used as desalination plant energy sources. SMRs have lower investment costs, inherent safety features, and increased availability compared to NPPs. The unique and innovative approach to implementation of SMRs as part of Gen-IV technology outlined in this book contributes to the application of nuclear power as a supplementary source to renewable energy. Discusses Gen-IV Power plants, their efficiency, cost effectiveness, safety, and methods to supply renewable energy; Presents Small Modular Reactors as a viable alternative to Nuclear Power Plants; Describes the benefits, uses, safety features, and challenges related to implementation of Small Modular Reactors.
This revised book covers the fundamentals of thermodynamics required to understand electrical power generation systems, honing in on the application of these principles to nuclear reactor power systems. This text treats the fundamentals of thermodynamics from the perspective of nuclear power systems. In addition to the Four Laws of Thermodynamics, it discusses Brayton and Rankine power cycles in detail with an emphasis on how they are implemented in nuclear systems. Chapters have been brought up-to-date due to significant new results that have become available for intercooled systems and combined cycles and include an updated steam table. The book starts with basic principles of thermodynamics as applied to power plant systems. It then describes how Nuclear Air-Brayton systems will work. It documents how they can be designed and the expected ultimate performance. It describes several types of Nuclear Air-Brayton systems that can be employed to meet different requirements and estimates component sizes and performance criteria for Small Modular Reactors (SMR) based on the Air-Brayton concept. The book provides useful insight into the engineering of nuclear power systems for students and the tabular data will be of great use to practicing engineers.
Japan's Quest for Nuclear Energy and the Price it has Paid: Accidents, Consequences, and Lessons Learned for the Global Nuclear Industry identifies major accidents in Japan that have happened at different stages of the nuclear fuel cycle in Japan, assesses the underlying causes of nuclear accidents, and identifies other systemic problems in the nuclear industry. It provides recommendations on how government, industry and academic institutions can work together toward achieving a zero-accident safety culture. |
You may like...
Resilience - A New Paradigm of Nuclear…
Joonhong Ahn, Franck Guarnieri, …
Hardcover
R1,572
Discovery Miles 15 720
An Introduction to Nuclear Fission
Walid Younes, Walter D. Loveland
Hardcover
R2,338
Discovery Miles 23 380
Fundamentals of CANDU Reactor Physics
Wei Shen, Benjamin Rouben
Hardcover
R2,425
Discovery Miles 24 250
Introduction to Nuclear Engineering…
John Lamarsh, Anthony Baratta
Paperback
R2,534
Discovery Miles 25 340
|