![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Energy technology & engineering > Nuclear power & engineering
This publication provides guidance to States and their competent authorities on how to implement and maintain a physical protection regime for transport of nuclear material. It will also be useful to shippers or carriers in the design and implementation of their physical protection systems. The publication builds upon IAEA Nuclear Security Series No. 13, Nuclear Security Recommendations on Physical Protection of Nuclear Material and Nuclear Facilities (INFCIRC/225/Revision 5), and provides additional guidance on how to implement these recommendations in practice.
A number of IAEA Member States generate relatively small quantities of radioactive waste and/or disused sealed sources in research or in the application of nuclear techniques in medicine and industry. This publication presents a modular approach to the design of waste processing and storage facilities to address the needs of such Member States with a cost effective and flexible solution that allows easy adjustment to changing needs in terms of capacity and variety of waste streams. The key feature of the publication is the provision of practical guidance to enable the users to determine their waste processing and storage requirements, specify those requirements to allow the procurement of the appropriate processing and storage modules and install and eventually operate those modules.
This book offers a comprehensive overview of the reprocessing of spent nuclear fuels, and discusses the applications of radiation, particularly spallation neutrons and gamma rays. The unspent nuclear fuel of a reactor amounts to roughly 95 per cent of the loaded fuel. It contains both fertile and fissile fuels, minor and higher actinides and radioactive fission products. In 2015, out of approximately 4 million metric tons of spent fuel, only 90,000 metric tons was reprocessed worldwide; the rest was either sent to repositories, kept for cooling down, or put on a waiting list for future reprocessing. With regard to the direct reutilization of spent nuclear fuel, the new technique of 'Energy Amplifiers' has attracted considerable attention among the nuclear energy community. Presenting extensive information on this technique, the book is divided into eight major sections: (i) spent nuclear fuel and alternative transmutation methods, (ii) general concept of accelerator-driven subcritical systems (ADSS), (iii) spallation neutron sources and the possibility of incineration, (iv) requirements for nuclear data, (v) transmutation of spent nuclear fuel and extension of the fuel cycle, (vi) spallation neutron production facilities, (vii) major experimental facilities for ADSS, and (viii) software tools for the design and modelling of ADSS. The book is ideally suited as a textbook for graduate students as well as a reference guide for researchers and practitioners.
Rising operating costs and increased competition have focused attention on the need to improve thermal performance in nuclear power plants (NPPs), to ensure efficient electricity generation. Efforts to improve thermal performance require a broad understanding of NPP design, operation, maintenance, ambient conditions, and thermal sciences. This publication provides various methodologies for tracking and trending NPP thermal performance. It describes the essential elements of a thermal performance programme, providing guidelines on the design of the balance of the plant systems for new build NPPs and improvements to an existing programme for operating NPPs.
Have you ever wondered how a nuclear power station works? This lively book will answer that question. It'll take you on a journey from the science behind nuclear reactors, through their start-up, operation and shutdown. Along the way it covers a bit of the engineering, reactor history, different kinds of reactors and what can go wrong with them. Much of this is seen from the viewpoint of a trainee operator on a Pressurised Water Reactor - the most common type of nuclear reactor in the world. Colin Tucker has spent the last thirty years keeping reactors safe. Join him on a tour that is the next best thing to driving a nuclear reactor yourself!
IAEA Member States have expressed relevant interest in the development and deployment of small and medium-sized or modular reactors (SMRs) to help cover their energy needs in the coming decades. SMR designs may include technological characteristics that differ significantly from those of the large nuclear power plants that are commercially available. Those SMR characteristics can represent a challenge when the existing design requirements, as established in IAEA Safety Standards Series No. SSR-2/1 (Rev. 1) Safety of Nuclear Power Plants: Design, are intended to be applied to SMRs. This publication focuses on the engineering judgement necessary to apply each of the design requirements in SSR-2/1 (Rev. 1), and also the entire set of requirements, to light water cooled and high temperature gas cooled SMRs. The publication includes the common ground reached by representatives from regulatory bodies, technical and scientific support organizations (TSOs) and SMR design organizations regarding the applicability of the design requirements to both SMR technologies. The insights provided are also intended to contribute to motivating further progress in the harmonization of national and international views on safety approaches for SMR technologies. This publication is intended for use by organizations dealing with nuclear power plant design or operation, and by regulatory bodies and TSOs, particularly from countries that are initiating or enlarging nuclear power programmes that include SMR units.
Geoscientists worldwide are developing and applying methodologies to estimate geologic hazards associated with the siting of nuclear facilities. Understanding such hazards, particularly in the context of the long functional lifetimes of many nuclear facilities, is challenging. This book documents the current state-of-the-art in volcanic and tectonic hazard assessment for proposed nuclear facilities, which must be located in areas where the risks associated with geologic processes are quantifiable and demonstrably low. Specific topics include overviews of volcanic and tectonic processes, the history of the development of hazard assessment methodologies, description of current techniques for characterizing hazards, and development of probabilistic methods for estimating risks. Hazard assessment examples are drawn from around the world. This volume will promote interest and debate about this important topic among researchers and graduates developing methods in geologic hazard assessment, geologists and engineers who assess the safety of nuclear facilities, and regulatory bodies that evaluate such assessments.
There are several hundred thousand nuclear gauges incorporating a radioactive source or a radiation generator in use all over the world. They have been used in a wide range of industries to improve the quality of products, optimize processes, and save energy and materials. The economic benefits have been amply demonstrated, and there is clear evidence that nuclear gauge technology can be used safely and will continue to play an important role. Although generic guidance for source handling is available, there have been no targeted recommendations for radiation safety in the use of nuclear gauges. To fill this gap the current publication provides practical guidance for implementing the safety requirements specified in IAEA Safety Standards Series No. GSR Part 3, Radiation Protection and Safety of Radiation Sources: International Basic Safety Standards, related to the use of nuclear gauges
Industrial computed tomography for advanced industrial non-destructive evaluation is a complex technological area, encompassing nuclear radiation detectors, mechanical engineering, computational mathematics and radiation physics. Additionally, the cost of applying this technology may be prohibitive. This guidebook provides an introduction to gamma computed tomography for non-destructive evaluation imaging in the simplest configuration. It is intended to be of use to the non-destructive testing community, currently practicing conventional radiography techniques. It provides clear information on the relevant practical issues and problems related to setting up computed tomography for industrial non-destructive testing and establishes a basis for understanding the intricacies of the technology
The design and operational requirements of nuclear facilities, such as nuclear power plants (NPPs), are specified and managed to ensure the safety and optimized operation of the facility. These requirements and how they are managed, interpreted and used to support facility functions and activities, are very important in all the life cycle phases of the facility from design through construction, commissioning, operation, and from refurbishment to decommissioning. This publication analyses and provides new insights into the different approaches followed by the nuclear industry for their effective management as well as guidance to develop a comprehensive requirement management programme in nuclear facilities. Although the guidance provided is based on industry experience to develop such programmes for NPPs, the principles and approaches provided can be used in all nuclear facilities including research reactors, fuel manufacturing facilities, fuel reprocessing and waste management facilities.
Reliable methods for estimating the cost of a radioactive waste disposal programme are crucial to ensure that the necessary funding for completing the disposal programme is available. Estimating the cost for disposal is however a challenging and complex task. Disposal programmes themselves are complex and long-term undertakings and conditions can be expected to change significantly over the time-span during which a disposal programme is developed and implemented. This publication provides Member States with guidance on how to develop cost estimates for a disposal programme and on how to establish funding mechanisms. It will help readers in becoming informed clients by familiarizing themselves with the approaches and complexities in cost estimates and funding mechanisms for disposal. The publication is applicable to all waste categories and both near surface and geological disposal. It contains relevant examples and case studies from national programmes. The cost figures are intended to give an indication of the possible cost of certain parts or aspects of the disposal programme rather than to compare different disposal programmes' costs.
Politics and technology intersect in the international effort to prevent nuclear proliferation. Written for scientists, policy makers, journalists, students, and concerned citizens, The Politics and Technology of Nuclear Proliferation makes a highly complex subject understandable. This comprehensive overview provides information about both the basic technologies and the political realities. Methods of producing weapon materials -- plutonium and highly enriched uranium -- as well as their use in bombs are described in detail, as is the generally successful international effort to prevent the spread of the ability to make nuclear weapons. In explaining the problems the world will face if nuclear weapons become generally available, Mozley summarizes and reviews the methods used to prevent proliferation and describes the status of those nations involved in trade in nuclear materials. He places emphasis on the danger of attack by renegade nations or terrorist groups, particularly the possibility that weapon material might be stolen from the presently impoverished and unstable former Soviet Union.
This publication presents the latest update to the INPRO methodology for Nuclear Energy Systems sustainability assessment in the area of waste management and reflects detailed discussions held at an IAEA technical meeting. Waste generated by nuclear energy systems and considered in this publication includes all classes and categories of waste from nuclear power plants and nuclear fuel cycle facilities over the course of normal operations and anticipated operational occurrences. It is anticipated that the information presented in this and other INPRO publications, for example IAEA Nuclear Energy Series No. NG-T-3.12, will assist in the identification of areas for improvement in nuclear energy systems.
With the dissolution of the Soviet Union the nuclear threats facing the world are constantly evolving and have grown more complex since the end of the Cold War. The diversion of complete weapon systems or nuclear material to rogue nations and terrorist organizations has increased. The events of the past years have proved the necessity to reevaluate these threats on a level never before considered. In recognition that no single country possesses all of the answers to the critical scientific, institutional and legal questions associated with combating nuclear and radiological terrorism, the NATO Advanced Research Workshop on "Preparedness for Nuclear and Radiological Threats" and this proceeding was structured to promote wide-ranging, multi-national exploration of critical technology needs and underlying scientific challenges to reducing the threat of nuclear/radiological terrorism; to illustrate through country-specific presentations how resulting technologies were used in national programs; and to outline the role of legal, policy and institutional frameworks in countering nuclear/ radiological terrorism. One key outcome of this book is better understanding of the interdependent contributions from across the international community of the scientific and technological components and the legal, policy and institutional components to combating nuclear and radiological threats.
This revision provides guidance on how to establish or improve, develop, implement, maintain, and sustain computer security within nuclear facilities. This publication addresses the use of risk informed approaches to establish and enhance computer security policies, programmes; it describes the integration of computer security into the management system of a facility; establishes a systematic approach to identifying facility functions and appropriate computer security measures that protect sensitive digital assets and the facility from the consequence of cyber-attacks consistent with the threat assessment or design basis threat.
This complete introduction to plasma physics and controlled fusion by one of the pioneering scientists in this expanding field offers both a simple and intuitive discussion of the basic concepts of this subject and an insight into the challenging problems of current research. In a wholly lucid manner the work covers single-particle motions, fluid equations for plasmas, wave motions, diffusion and resistivity, Landau damping, plasma instabilities and nonlinear problems. For students, this outstanding text offers a painless introduction to this important field; for teachers, a large collection of problems; and for researchers, a concise review of the fundamentals as well as original treatments of a number of topics never before explained so clearly. This revised edition contains new material on kinetic effects, including Bernstein waves and the plasma dispersion function, and on nonlinear wave equations and solitons. For the third edition, updates was made throughout each existing chapter, and two new chapters were added; Ch 9 on "Special Plasmas" and Ch 10 on Plasma Applications (including Atmospheric Plasmas).
The development of nuclear weapons by the Manhattan Project during World War II was one of the most dramatic scientific/technological episodes in human history. This book, prepared by a recognized expert on the Manhattan Project, offers a concise survey of the essential physics concepts underlying fission weapons. The text describes the energetics and timescales of fast-neutron chain reactions, why only certain isotopes of uranium and plutonium are suitable for use in fission weapons, how critical mass and bomb yield can be estimated, how the efficiency of nuclear weapons can be enhanced, how the fissile forms of uranium and plutonium were obtained, some of the design details of the 'Little Boy' and 'Fat Man' bombs, and some of the thermal, shock, and radiation effects of nuclear weapons. Calculation exercises are provided, and a Bibliography lists authoritative print and online sources of information for readers who wish to pursue more detailed study of this fascinating topic.
The European Community's research programme 'Management and Disposal of Radioactive Waste' has the prime objective of finding effective means for ensuring the safety of man and his environment against the potential hazards arising from such wastes. In 1980, the Commission of the European Communities held its first major meeting on the subject, and published the proceedings, discussions and results. This volume presents the proceedings of the second such conference, following the completion of a research and development programme in the five intervening years. The main topics discussed are: treatment and conditioning technology, testing and evaluation of waste forms and packages, geologic disposal, migration, and performance analysis of geologic isolation systems; representing an analysis of the latest results achieved by sustained collaboration of leading laboratories in Europe. Thus, all of the contributions are of a high standard from the major exponents in the field throughout the European Community.
This Safety Requirements publication establishes requirements that support Principle 3 of the Fundamental Safety Principles in relation to establishing, sustaining and continuously improving leadership and management for safety and an integrated management system. It emphasizes that leadership for safety, management for safety, an effective management system and a systemic approach (i.e. an approach in which interactions between technical, human and organizational factors are duly considered) are all essential to the specification and application of adequate safety measures and to the fostering of a strong safety culture. Leadership and an effective management system will integrate safety, health, environmental, security, quality, human-and-organizational factors, societal and economic elements. The management system will ensure the fostering of a strong safety culture, regular assessment of performance and the application of lessons from experience. The publication is intended for use by regulatory bodies, operating organizations and other organizations concerned with facilities and activities that give rise to radiation risks.
For operators of nuclear research facilities, it is of particular importance to investigate minor incidents: indeed, as safety demonstrations are generally based on the presence of several independent "lines of defence," only through attentive investigation of every occurrence, usually minor and of no consequence, can the level of trust placed in each of these defensive lines be confirmed, or the potential risks arising out of a possible weakness in the system be anticipated. The efficiency of the system is based on a rigorous procedure: stringent attention to all incidents, consideration of the potential consequences of the incidents in their most pessimistic scenarios, and promotion of a broad conception of transpositions of the events, in time and space, for experience feedback. This efficiency presumes motivation on the part of all those involved, hence the importance of dissociating from the concept of an "incident" any notion of "error" or "blame" both in internal analysis and in public communications. The nuclear industry has developed some very progressive tools for experience feedback, which could interest also management of other technological risks. This book presents the proceedings of a NATO Advanced Workshop dedicated to this important matter of concern.
Since 1975, a short course entitled "System Safety and Reliability Analysis" has been presented to over 200 NRC personnel and contractors. The course has been taught jointly by David F. Haasl, Institute of System Sciences, Professor Norman H. Roberts, University of Washington, and 'members of the Probabilistic Analysis Staff, NRC, as part of a risk assessment training program sponsored by the Probabilistic Analysis Staff. This handbook has been developed not only to serve as text for the System Safety and Reliability Course, but also to make available to others a set of otherwise undocumented material on fault tree construction and evaluation. The publication of this handbook is in accordance with the recommendations of the Risk Assessment Review Group Report (NUREG/CR-0400) in which it was stated that the fault/event tree methodology both can and should be used more widely by the NRC. It is hoped that this document will help to codify and systematize the fault tree approach to systems analysis.
A major concern about the global expansion of nuclear power is the potential spread of nuclear fuel cycle technology (particularly uranium enrichment and spent fuel processing) that could be used for nuclear weapons. Despite 30 years of effort to limit access to uranium enrichment, several undeterred states pursued clandestine nuclear programs, the A.Q. Khan black market network's sales to Iran and North Korea representing the most egregious examples. However, concern over the spread of enrichment and reprocessing technologies may be offset by support for nuclear power as a cleaner and more secure alternative to fossil fuels. This book explores the history of reactor and fuel cycle technologies development with a focus on the policy implications of expanding global access to nuclear power and U.S. uranium reserve estimates. |
![]() ![]() You may like...
XII Symposium of Probability and…
Daniel Hernandez-Hernandez, Juan Carlos Pardo, …
Hardcover
R4,143
Discovery Miles 41 430
Power Maths 2nd Edition Practice Book 1B
Tony Staneff, Josh Lury
Paperback
R137
Discovery Miles 1 370
Kirstenbosch - A Visitor's Guide
Colin Paterson-Jones, John Winter
Paperback
Practical Cold Spray
Victor Kenneth Champagne Jr., Ozan Cagatay Ozdemir, …
Hardcover
R7,008
Discovery Miles 70 080
The Asian Aspiration - Why And How…
Greg Mills, Olusegun Obasanjo, …
Paperback
Differential Equations with Linear…
Matthew R. Boelkins, Jack L. Goldberg, …
Hardcover
R3,047
Discovery Miles 30 470
Platinum Mathematics - Grade 4…
L. Bowie, C. Gleeson-Baird, …
Paperback
![]() R210 Discovery Miles 2 100
|