![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Business & Economics > Business & management > Management & management techniques > Operational research
Risk and reward are always foremost in the determination of investment decisions and business transactions. Advances in the area of Information Communication Technologies (ICT) have enabled the development of new business paradigms. Such paradigms involve transactions taking place between loosely connected parties, often totally or partially unknown to one another. One important concept required to ensure such transactions are successful is transactional risk. The importance of doing this has been demonstrated in recent financial crisis. This book is unique in simultaneously taking into account the likelihood of an event occurring and its financial impact and provides an integrated discussion of the process of transactional risk identification, assessment, evaluation, management and recording in these emerging domains. It provides a detailed and clear exposition of the importance of transactional risk before detailing for its assessment and evaluation. The scope of the book is theoretical and practical and as such it will have a broad market both within academia and industry. Specifically this book should be of primary interest to researchers, graduate students and practitioners in the area of developing business intelligence techniques and their application in various real world applications.
The main objective of this book is to provide the necessary background to work with big data by introducing some novel optimization algorithms and codes capable of working in the big data setting as well as introducing some applications in big data optimization for both academics and practitioners interested, and to benefit society, industry, academia, and government. Presenting applications in a variety of industries, this book will be useful for the researchers aiming to analyses large scale data. Several optimization algorithms for big data including convergent parallel algorithms, limited memory bundle algorithm, diagonal bundle method, convergent parallel algorithms, network analytics, and many more have been explored in this book.
The International Civil Aviation Organization's (ICAO) decision to require aviation organizations to adopt Safety Management Systems poses a major problem especially for small and medium sized aviation companies. The complexity of regulations overstrains the aviation stakeholders who seek to fully advantage from them but have no clear guidance. The aim of the book is to show the implementation of such a new system with pragmatic effort in order to gain a gradation for smaller operators. This approach should illustrate the leeway in order to adapt the processes and to show the interfaces between Corporate Risk Management and Safety Management. The book shows how to build a system with reasonable effort, appropriate to the size and complexity of the specific operator. It also gives inputs on the key aspects and how to effectively operate such a system with the various interfaces. Furthermore, the book highlights the importance of Corporate Risk Management independent of Safety Management Systems based on ICAO.
This guide is designed for systems researchers - emerging and seasoned - searching for holistic approaches of inquiry into complexity, which the Systems Sciences provide. The authors share insight into the foundations of research that are not only systematic in terms of rigor, but systemic in perspective, analysis, design, development, implementation, reporting, and evaluation. This guide also explores researcher competencies necessary to conduct sound systems research. Researchers using this guide will gain understanding of what distinguishes systems research from other types of research and why it is important in research today.
This book on constrained optimization is novel in that it fuses these themes: * use examples to introduce general ideas; * engage the student in spreadsheet computation; * survey the uses of constrained optimization;. * investigate game theory and nonlinear optimization, * link the subject to economic reasoning, and * present the requisite mathematics. Blending these themes makes constrained optimization more accessible and more valuable. It stimulates the student's interest, quickens the learning process, reveals connections to several academic and professional fields, and deepens the student's grasp of the relevant mathematics. The book is designed for use in courses that focus on the applications of constrained optimization, in courses that emphasize the theory, and in courses that link the subject to economics.
One of the central problems in operations research and management
science is how to quantify the effects of uncertainty about the
future. This, the second volume in a series of handbooks, is
devoted to models where chance events play a major role. The
thirteen chapters survey topics in applied probability that have
been particularly useful in operations research and management
science. Each chapter was written by an expert, both in subject
matter and in its exposition.
Dynamics of Information Systems: Algorithmic Approaches presents recent developments and results found by participants of the Fourth International Conference on the Dynamics of Information Systems, which took place at the University of Florida, Gainesville FL, USA on February 20-22, 2012. The purpose of this conference was to bring together scientists and engineers from industry, government, and universities to exchange knowledge and results in a broad range of topics relevant to the theory and practice of the dynamics of information systems. Dynamics of Information plays an increasingly critical role in our society. The influence of information on social, biological, genetic, and military systems must be better understood to achieve large advances in the capability and understanding of these systems. Applications are widespread and include: detection of terrorist networks, design of highly efficient businesses, computer networks, quantum entanglement, genome modeling, multi-robotic systems, and industrial and manufacturing safety. The book contains state-of-the-art work on theory and practice relevant to the dynamics of information systems. It covers algorithmic approaches to numerical computations with infinite and infinitesimal numbers; presents important problems arising in service-oriented systems, such as dynamic composition and analysis of modern service-oriented information systems and estimation of customer service times on a rail network from GPS data; addresses the complexity of the problems arising in stochastic and distributed systems; and discusses modulating communication for improving multi-agent learning convergence. Network issues-in particular minimum-risk maximum-clique problems, vulnerability of sensor networks, influence diffusion, community detection, and link prediction in social network analysis, as well as a comparative analysis of algorithms for transmission network expansion planning-are described in later chapters.
This book discusses key issues in the planning and operation of large-scale integrated energy systems (LSIES). It establishes individual-based models for LSIES and develops multi-objective optimization algorithms and multi-attribute decision making support systems, which are applied to the planning and optimal operation of LSIES. It is a valuable reference work for researchers, students and engineers who are interested in energy systems, operation research and decision theory.
This book presents the proceedings of the Seventh International Conference on Management Science and Engineering Management (ICMSEM2013) held from November 7 to 9, 2013 at Drexel University, Philadelphia, Pennsylvania, USA and organized by the International Society of Management Science and Engineering Management, Sichuan University (Chengdu, China) and Drexel University (Philadelphia, Pennsylvania, USA). The goals of the Conference are to foster international research collaborations in Management Science and Engineering Management as well as to provide a forum to present current research findings. The selected papers cover various areas in management science and engineering management, such as Decision Support Systems, Multi-Objective Decisions, Uncertain Decisions, Computational Mathematics, Information Systems, Logistics and Supply Chain Management, Relationship Management, Scheduling and Control, Data Warehousing and Data Mining, Electronic Commerce, Neural Networks, Stochastic Models and Simulation, Fuzzy Programming, Heuristics Algorithms, Risk Control, Organizational Behavior, Green Supply Chains, and Carbon Credits. The proceedings introduce readers to novel ideas on and different problem-solving methods in Management Science and Engineering Management. We selected excellent papers from all over the world, integrating their expertise and ideas in order to improve research on Management Science and Engineering Management.
This book presents modeling methods and algorithms for data-driven prediction and forecasting of practical industrial process by employing machine learning and statistics methodologies. Related case studies, especially on energy systems in the steel industry are also addressed and analyzed. The case studies in this volume are entirely rooted in both classical data-driven prediction problems and industrial practice requirements. Detailed figures and tables demonstrate the effectiveness and generalization of the methods addressed, and the classifications of the addressed prediction problems come from practical industrial demands, rather than from academic categories. As such, readers will learn the corresponding approaches for resolving their industrial technical problems. Although the contents of this book and its case studies come from the steel industry, these techniques can be also used for other process industries. This book appeals to students, researchers, and professionals within the machine learning and data analysis and mining communities.
During the last four decades there has been a remarkable development in optimization and optimal control. Due to its wide variety of applications, many scientists and researchers have paid attention to fields of optimization and optimal control. A huge number of new theoretical, algorithmic, and computational results have been observed in the last few years. This book gives the latest advances, and due to the rapid development of these fields, there are no other recent publications on the same topics. Key features: Provides a collection of selected contributions giving a state-of-the-art account of recent developments in the field Covers a broad range of topics in optimization and optimal control, including unique applications Includes chapters written by experts in their respective disciplines Appeals to a broad audience of researchers, practitioners, and advanced graduate students in applied mathematics and engineering
This book presents a collection of studies that have applied analytical methods to improve preparedness, planning, and a faster response to A&E and public health emergencies like epidemic and disease outbreak. It explores the application of quantitative Operational Research techniques such as Mathematical Modelling and Optimization, Maximum Likelihood Estimation, Multiple-Criteria Decision Analysis, Discrete-event Simulation, Data Mining, and Bayesian Decision Models. These techniques have been used for better management of emergency care, including first responders, ambulance services, A&E departments, and mass immunisation centres. This volume focuses on planning at the operational level whereas volume 2 focuses mainly on planning at the strategic level. The OR Essentials series presents a unique cross-section of high quality research work fundamental to understanding contemporary issues and research across a range of Operational Research (OR) topics. It brings together some of the best research papers from the highly respected journals of the Operational Research Society, also published by Palgrave Macmillan.
This book covers the proceedings from the 2016 International Symposium on Chaos, Complexity and Leadership, and reflects current research results of chaos and complexity studies and their applications in various fields. Included are research papers in the fields of applied nonlinear methods, modeling of data and simulations, as well as theoretical achievements of chaos and complex systems. Also discussed are leadership and management applications of chaos and complexity theory.
The storage yard is the operational and geographical centre of most seaport container terminals. Therefore, it is of particular importance for the whole terminal system and plays a major role for trade and transport flows. One of the latest trends in container-storage operations is the automated Rail-Mounted-Gantry-Crane system, which offers dense stacking, and offers low labour costs. This book investigates whether the operational performance of container terminals is influenced by the design of these storage systems and to what extent the performance is affected by the terminal's framework conditions, and discusses the strategies applied for container stacking and crane scheduling. A detailed simulation model is presented to compare the performance effects of alternative storage designs, innovative planning strategies, and other influencing factors. The results have useful implications future research, practical terminal planning and optimisation.
Contributions in this volume focus on computationally efficient algorithms and rigorous mathematical theories for analyzing large-scale networks. Researchers and students in mathematics, economics, statistics, computer science and engineering will find this collection a valuable resource filled with the latest research in network analysis. Computational aspects and applications of large-scale networks in market models, neural networks, social networks, power transmission grids, maximum clique problem, telecommunication networks, and complexity graphs are included with new tools for efficient network analysis of large-scale networks. This proceeding is a result of the 7th International Conference in Network Analysis, held at the Higher School of Economics, Nizhny Novgorod in June 2017. The conference brought together scientists, engineers, and researchers from academia, industry, and government.
This book integrates multiple criteria concepts and methods for problems within the Risk, Reliability and Maintenance (RRM) context. The concepts and foundations related to RRM are considered for this integration with multicriteria approaches. In the book, a general framework for building decision models is presented and this is illustrated in various chapters by discussing many different decision models related to the RRM context. The scope of the book is related to ways of how to integrate Applied Probability and Decision Making. In Applied Probability, this mainly includes: decision analysis and reliability theory, amongst other topics closely related to risk analysis and maintenance. In Decision Making, it includes a broad range of topics in MCDM (Multi-Criteria Decision Making) and MCDA (Multi-Criteria Decision Aiding; also known as Multi-Criteria Decision Analysis). In addition to decision analysis, some of the topics related to Mathematical Programming area are briefly considered, such as multiobjective optimization, since methods related to these topics have been applied to the context of RRM. The book addresses an innovative treatment for the decision making in RRM, thereby improving the integration of fundamental concepts from the areas of both RRM and decision making. This is accomplished by presenting an overview of the literature on decision making in RRM. Some pitfalls of decision models when applying them to RRM in practice are discussed and guidance on overcoming these drawbacks is offered. The procedure enables multicriteria models to be built for the RRM context, including guidance on choosing an appropriate multicriteria method for a particular problem faced in the RRM context. The book also includes many research advances in these topics. Most of the multicriteria decision models that are described are specific applications that have been influenced by this research and the advances in this field. Multicriteria and Multiobjective Models for Risk, Reliability and Maintenance Decision Analysis is implicitly structured in three parts, with 12 chapters. The first part deals with MCDM/A concepts methods and decision processes. The second part presents the main concepts and foundations of RRM. Finally the third part deals with specific decision problems in the RRM context approached with MCDM/A models.
This book on Infectious Disease Informatics (IDI) and biosurveillance is intended to provide an integrated view of the current state of the art, identify technical and policy challenges and opportunities, and promote cross-disciplinary research that takes advantage of novel methodology and what we have learned from innovative applications. This book also fills a systemic gap in the literature by emphasizing informatics driven perspectives (e.g., information system design, data standards, computational aspects of biosurveillance algorithms, and system evaluation). Finally, this book attempts to reach policy makers and practitioners through the clear and effective communication of recent research findings in the context of case studies in IDI and biosurveillance, providing "hands-on" in-depth opportunities to practitioners to increase their understanding of value, applicability, and limitations of technical solutions. This book collects the state of the art research and modern perspectives of distinguished individuals and research groups on cutting-edge IDI technical and policy research and its application in biosurveillance. The contributed chapters are grouped into three units. Unit I provides an overview of recent biosurveillance research while highlighting the relevant legal and policy structures in the context of IDI and biosurveillance ongoing activities. It also identifies IDI data sources while addressing information collection, sharing, and dissemination issues as well as ethical considerations. Unit II contains survey chapters on the types of surveillance methods used to analyze IDI data in the context of public health and bioterrorism. Specific computational techniques covered include: text mining, time series analysis, multiple data streams methods, ensembles of surveillance methods, spatial analysis and visualization, social network analysis, and agent-based simulation. Unit III examines IT and decision support for public health event response and bio-defense. Practical lessons learned in developing public health and biosurveillance systems, technology adoption, and syndromic surveillance for large events are discussed. The goal of this book is to provide an understandable interdisciplinary IDI and biosurveillance reference either used as a standalone textbook or reference for students, researchers, and practitioners in public health, veterinary medicine, biostatistics, information systems, computer science, and public administration and policy.
This book is about elicitation: the facilitation of the quantitative expression of subjective judgement about matters of fact, interacting with subject experts, or about matters of value, interacting with decision makers or stakeholders. It offers an integrated presentation of procedures and processes that allow analysts and experts to think clearly about numbers, particularly the inputs for decision support systems and models. This presentation encompasses research originating in the communities of structured probability elicitation/calibration and multi-criteria decision analysis, often unaware of each other's developments. Chapters 2 through 9 focus on processes to elicit uncertainty from experts, including the Classical Method for aggregating judgements from multiple experts concerning probability distributions; the issue of validation in the Classical Method; the Sheffield elicitation framework; the IDEA protocol; approaches following the Bayesian perspective; the main elements of structured expert processes for dependence elicitation; and how mathematical methods can incorporate correlations between experts. Chapters 10 through 14 focus on processes to elicit preferences from stakeholders or decision makers, including two chapters on problems under uncertainty (utility functions), and three chapters that address elicitation of preferences independently of, or in absence of, any uncertainty elicitation (value functions and ELECTRE). Two chapters then focus on cross-cutting issues for elicitation of uncertainties and elicitation of preferences: biases and selection of experts. Finally, the last group of chapters illustrates how some of the presented approaches are applied in practice, including a food security case in the UK; expert elicitation in health care decision making; an expert judgement based method to elicit nuclear threat risks in US ports; risk assessment in a pulp and paper manufacturer in the Nordic countries; and elicitation of preferences for crop planning in a Greek region.
With advancing information technology, businesses must adapt to more efficient structures that utilize the latest in robotics and machine learning capabilities in order to create optimal human-robot cooperation. However, there are vital rising concerns regarding the possible consequences of deploying artificial intelligence, sophisticated robotic technologies, automated vehicles, self-managing supply modes, and blockchain economies on business performance and culture, including how to sustain a supportive business culture and to what extent a strategic fit between human-robot collaboration in a business ecosystem can be created. The Handbook of Research on Strategic Fit and Design in Business Ecosystems is a collection of innovative research that builds a futuristic view of evolving business ecosystems and a deeper understanding of business transformation processes in the new digital business era. Featuring research on topics such as cultural hybridization, Industry 4.0, and cybersecurity, this book is ideally designed for entrepreneurs, executives, managers, corporate strategists, economists, IT specialists, IT consultants, engineers, students, researchers, and academicians seeking to improve their understanding of future competitive business practices with the adoption of robotic and information technologies.
"Advances in Bio-inspired Combinatorial Optimization Problems" illustrates several recent bio-inspired efficient algorithms for solving NP-hard problems. Theoretical bio-inspired concepts and models, in particular for agents, ants and virtual robots are described. Large-scale optimization problems, for example: the Generalized Traveling Salesman Problem and the Railway Traveling Salesman Problem, are solved and their results are discussed. Some of the main concepts and models described in this book are: inner rule to guide ant search - a recent model in ant optimization, heterogeneous sensitive ants; virtual sensitive robots; ant-based techniques for static and dynamic routing problems; stigmergic collaborative agents and learning sensitive agents. This monograph is useful for researchers, students and all people interested in the recent natural computing frameworks. The reader is presumed to have knowledge of combinatorial optimization, graph theory, algorithms and programming. The book should furthermore allow readers to acquire ideas, concepts and models to use and develop new software for solving complex real-life problems.
For many years companies have been investing in enterprise systems and IT initiatives but they are now struggling to achieve the desired results. It takes a long time to make the best of your enterprise systems so businesses must stop looking for the next technology 'silver bullet' and instead maximize the value of existing IT investments
In two volumes, Planning Production and Inventories in the Extended Enterprise: A State of the Art Handbook examines production planning across the extended enterprise against a backdrop of important gaps between theory and practice. The early chapters describe the multifaceted nature of production planning problems and reveal many of the core complexities. The middle chapters describe recent research on theoretical techniques to manage these complexities. Accounts of production planning system currently in use in various industries are included in the later chapters. Throughout the two volumes there are suggestions on promising directions for future work focused on closing the gaps. Included in Volume 1 are papers on the Historical Foundations of Manufacturing Planning and Control; Advanced Planning and Scheduling Systems; Sustainable Product Development and Manufacturing; Uncertainty and Production Planning; Demand Forecasting; Production Capacity; Data in Production and Supply Chain Planning; Financial Uncertainty in SC Models; Field Based Research in Production Control; Collaborative SCM; Sequencing and Coordination in Outsourcing and Subcontracting Operations; Inventory Management; Pricing, Variety and Inventory Decisions for Substitutable Items; Perishable and Aging Inventories; Optimization Models of Production Planning Problems; Aggregate Modeling of Manufacturing Systems; Robust Stability Analysis of Decentralized Supply Chains; Simulation in Production Planning; and Simulation-Optimization in Support of Tactical and Strategic Enterprise Decisions. Included in Volume 2 are papers on Workload and Lead-Time Considerations under Uncertainty; Production Planning and Scheduling; Production Planning Effects on Dynamic Behavior of A Simple Supply Chain; Supply and Demand in Assemble-to-Order Supply Chains; Quantitative Risk Assessment in Supply Chains; A Practical Multi-Echelon Inventory Model with Semiconductor Application; Supplier Managed Inventory for Custom Items with Long Lead Times; Decentralized Supply Chain Formation; A Cooperative Game Approach to Procurement Network Formation; Flexible SC Contracts with Options; Build-to-Order Meets Global Sourcing for the Auto Industry; Practical Modeling in Automotive Production; Discrete Event Simulation Models; Diagnosing and Tuning a Statistical Forecasting System; Enterprise-Wide SC Planning in Semiconductor and Package Operations; Production Planning in Plastics; SC Execution Using Predictive Control; Production Scheduling in The Pharmaceutical Industry; Computerized Scheduling for Continuous Casting in Steelmaking; and Multi-Model Production Planning and Scheduling in an Industrial Environment.
This handbook surveys important stochastic problems and models in manufacturing system operations and their stochastic analysis. Using analytical models to design and control manufacturing systems and their operations entail critical stochastic performance analysis as well as integrated optimization models of these systems. Topics deal with the areas of facilities planning, transportation, and material handling systems, logistics and supply chain management, and integrated productivity and quality models covering: * Stochastic modeling and analysis of manufacturing systems * Design, analysis, and optimization of manufacturing systems * Facilities planning, transportation, and material handling systems analysis * Production planning, scheduling systems, management, and control * Analytical approaches to logistics and supply chain management * Integrated productivity and quality models, and their analysis * Literature surveys of issues relevant in manufacturing systems * Case studies of manufacturing system operations and analysis Today's manufacturing system operations are becoming increasingly complex. Advanced knowledge of best practices for treating these problems is not always well known. The purpose of the book is to create a foundation for the development of stochastic models and their analysis in manufacturing system operations. Given the handbook nature of the volume, introducing basic principles, concepts, and algorithms for treating these problems and their solutions is the main intent of this handbook. Readers unfamiliar with these research areas will be able to find a research foundation for studying these problems and systems.
Written by the world's leading academics in the outsourcing field, this books gives the most recent overview of developments in research and practice. It focuses on new practices in innovation, offshoring, onshoring, capabilities, project management and cloud services, offering a distinctive theory of outsourcing.
From the Preface: Blending ideas from operations research, music psychology, music theory, and cognitive science, this book aims to tell a coherent story of how tonality pervades our experience, and hence our models, of music. The story is told through the developmental stages of the Spiral Array model for tonality, a geometric model designed to incorporate and represent principles of tonal cognition, thereby lending itself to practical applications of tonal recognition, segmentation, and visualization. Mathematically speaking, the coils that make up the Spiral Array model are in effect helices, a spiral referring to a curve emanating from a central point. The use of "spiral" here is inspired by spiral staircases, intertwined spiral staircases: nested double helices within an outer spiral. The book serves as a compilation of knowledge about the Spiral Array model and its applications, and is written for a broad audience, ranging from the layperson interested in music, mathematics, and computing to the music scientist-engineer interested in computational approaches to music representation and analysis, from the music-mathematical and computational sciences student interested in learning about tonality from a formal modeling standpoint to the computer musician interested in applying these technologies in interactive composition and performance. Some chapters assume no musical or technical knowledge, and some are more musically or computationally involved. |
You may like...
Malikah - The Girl Who Loves Sport
Darryl Earl David, Boebie Hamza
Paperback
Tesourus Van Afrikaans
Leon De Stadler, Marquerite De Stadler
Hardcover
|