![]() |
![]() |
Your cart is empty |
||
Books > Business & Economics > Business & management > Management & management techniques > Operational research
This book introduces the reader to the field of multiobjective optimization through problems with simple structures, namely those in which the objective function and constraints are linear. Fundamental notions as well as state-of-the-art advances are presented in a comprehensive way and illustrated with the help of numerous examples. Three of the most popular methods for solving multiobjective linear problems are explained, and exercises are provided at the end of each chapter, helping students to grasp and apply key concepts and methods to more complex problems. The book was motivated by the fact that the majority of the practical problems we encounter in management science, engineering or operations research involve conflicting criteria and therefore it is more convenient to formulate them as multicriteria optimization models, the solution concepts and methods of which cannot be treated using traditional mathematical programming approaches.
This book is a comprehensive introduction of the reader into the simulation and modelling techniques and their application in the management of organisations. The book is rooted in the thorough understanding of systems theory applied to organisations and focuses on how this theory can apply to econometric models used in the management of organisations. The econometric models in this book employ linear and dynamic programming, graph theory, queuing theory, game theory, etc. and are presented and analysed in various fields of application, such as investment management, stock management, strategic decision making, management of production costs and the lifecycle costs of quality and non-quality products, production quality Management, etc.
Safe and high-efficiency operation are two main issues in rail transportation. This book focuses on these two key issues, bringing together a wealth of research to offer theoretical and technical support for rail operations and maintenance. In addition, it presents a comprehensive active safety assurance system for rail transportation, which includes the quantitative state identification and prediction of train components; rail transportation safety and reliability assessment methods; and rail transportation risk assessment at the rail networks level, which achieves the quantitative and high-precision monitoring of complex systems in real-time. In addition, it extends active safety based theory to safety prognostic analysis in the traffic system. Lastly, representative case studies verify that the theory is suitable for the actual traffic system.
"Definite" is a decision support software package that improves the quality of environmental decision making since it: structures the decision process; makes full use of available information; provides a rational, responsible and justifiable decision that is open for external review; and allows the exploration of all the options by the use of 'what if?' scenarios. "Definite" is, in fact, a whole toolkit of methods that can be used on a wide variety of problems. If there is a problem to be solved and alternative solutions can be identified, then "Definite" can weigh up the alternatives and assess the most reasonable option. The system contains a number of methods for supporting problem definition as well as graphical and other methods to support representation. In the assessment of the problem, "Definite" can support priority allocation in a number of ways. "Definite" can deal with all types of alternatives, thanks to the inclusion of five different multicriteria methods, as well as cost-benefit and cost-effectiveness analysis. Related procedures such as weight assessment, standardization, discounting, and a wide variety of methods for sensitivity analysis are also available. "Definite" - allowing for fifty alternatives and fifty effects - supports the whole decision process, from problem definition to report generation. The structured approach adopted ensures that the decisions arrived at are systematic and consistent. The full version of "Definite" comprises: the book, "Multiobjective Decision Support for Environmental Management"; "The Definite User Manual"; the Definite software package; and a helpdesk for user support.
This book introduces a new paradigm called 'Optimization in Changeable Spaces' (OCS) as a useful tool for decision making and problem solving. It illustrates how OCS incorporates, searches, and constructively restructures the parameters, tangible and intangible, involved in the process of decision making. The book elaborates on OCS problems that can be modeled and solved effectively by using the concepts of competence set analysis, Habitual Domain (HD) and the mental operators called the 7-8-9 principles of deep knowledge of HD. In addition, new concepts of covering and discovering processes are proposed and formulated as mathematical tools to solve OCS problems. The book also includes reformulations of a number of illustrative real-life challenging problems that cannot be solved by traditional optimization techniques into OCS problems, and details how they can be addressed. Beyond that, it also includes perspectives related to innovation dynamics, management, artificial intelligence, artificial and e-economics, scientific discovery and knowledge extraction. This book will be of interest to managers of businesses and institutions, policy makers, and educators and students of decision making and behavior in DBA and/or MBA.
The book presents a broad view on the nature of intelligent decision-making which is characterized by the use of models and methods in the framework of decision support for management. Contributions to this volume dedicated to Paul StAhly on the occasion of his 65th birthday include theoretical research and applications in optimization, operations research as well as decision support and management systems.
This book covers topics in portfolio management and multicriteria decision analysis (MCDA), presenting a transparent and unified methodology for the portfolio construction process. The most important feature of the book includes the proposed methodological framework that integrates two individual subsystems, the portfolio selection subsystem and the portfolio optimization subsystem. An additional highlight of the book includes the detailed, step-by-step implementation of the proposed multicriteria algorithms in Python. The implementation is presented in detail; each step is elaborately described, from the input of the data to the extraction of the results. Algorithms are organized into small cells of code, accompanied by targeted remarks and comments, in order to help the reader to fully understand their mechanics. Readers are provided with a link to access the source code through GitHub. This Work may also be considered as a reference which presents the state-of-art research on portfolio construction with multiple and complex investment objectives and constraints. The book consists of eight chapters. A brief introduction is provided in Chapter 1. The fundamental issues of modern portfolio theory are discussed in Chapter 2. In Chapter 3, the various multicriteria decision aid methods, either discrete or continuous, are concisely described. In Chapter 4, a comprehensive review of the published literature in the field of multicriteria portfolio management is considered. In Chapter 5, an integrated and original multicriteria portfolio construction methodology is developed. Chapter 6 presents the web-based information system, in which the suggested methodological framework has been implemented. In Chapter 7, the experimental application of the proposed methodology is discussed and in Chapter 8, the authors provide overall conclusions. The readership of the book aims to be a diverse group, including fund managers, risk managers, investment advisors, bankers, private investors, analytics scientists, operations researchers scientists, and computer engineers, to name just several. Portions of the book may be used as instructional for either advanced undergraduate or post-graduate courses in investment analysis, portfolio engineering, decision science, computer science, or financial engineering.
This book provides theoretical and practical insights for effective decision making in situations that involve various types of conflict cleavages. Embedding historical analysis, negotiation analysis, political scientific analysis and game theoretical analysis in an integrated analytical framework allows a comprehensive perspective on various dilemmas and self-enforcing dynamics that inhibit decision making. The conceptualization of strategic facilitation highlights the value of leadership, chairmanship and the role of threshold states in facilitating decision making as the global climate change negotiations unfolds.
This handbook compiles state-of-the-art empirical studies and applications using Data Envelopment Analysis (DEA). It includes a collection of 18 chapters written by DEA experts. Chapter 1 examines the performance of CEOs of U.S. banks and thrifts. Chapter 2 describes the network operational structure of transportation organizations and the relative network data envelopment analysis model. Chapter 3 demonstrates how to use different types of DEA models to compute total-factor energy efficiency scores with an application to energy efficiency. In chapter 4, the authors explore the impact of incorporating customers' willingness to pay for service quality in benchmarking models on cost efficiency of distribution networks, and chapter 5 provides a brief review of previous applications of DEA to the professional baseball industry, followed by two detailed applications to Major League Baseball. Chapter 6 examines efficiency and productivity of U.S. property-liability (P-L) insurers using DEA, while chapter 7 presents a two-stage network DEA model that decomposes the overall efficiency of a decision-making unit into two components. Chapter 8 presents a review of the literature of DEA models for the perfoemance assessment of mutual funds, and chapter 9 discusses the management strategies formulation of the international tourist hotel industry in Taiwan. Chapter 10 presents a novel use of the two-stage network DEA to evaluate sustainable product design performances. In chapter 11 authors highlight limitations of some DEA environmental efficiency models, and chapter 12 reviews applications of DEA in secondary and tertiary education. Chapter 13 measures the relative performance of New York State school districts in the 2011-2012 academic year. Chapter 14 provides an introductory prelude to chapters 15 and 16, which both provide detailed applications of DEA in marketing. Chapter 17 then shows how to decompose a new total factor productivity index that satisfies all economically-relevant axioms from index theory with an application to U.S. agriculture. Finally, chapter 18 presents a unique study that conducts a DEA research front analysis, applying a network clustering method to group the DEA literature over the period 2000 to 2014.
This book focuses on the use of quantitative methods for both business and management, helping readers understand the most relevant quantitative methods for managerial decision-making. Pursuing a highly practical approach, the book reduces the theoretical information to a minimum, so as to give full prominence to the analysis of real business problems. Each chapter includes a brief theoretical explanation, followed by a real-life managerial case that needs to be solved, which is accompanied by a corresponding Microsoft Excel (R) dataset. The practical cases and exercises are solved using Excel, and for each problem, the authors provide an Excel file with the complete solution and corresponding calculations, which can be downloaded easily from the book's website. Further, in an appendix, readers can find solutions to the same problems, but using the R statistical language. The book represents a valuable reference guide for postgraduate, MBA and executive education students, as it offers a hands-on, practical approach to learning quantitative methods in a managerial context. It will also be of interest to managers looking for a practical and straightforward way to learn about quantitative methods and improve their decision-making processes.
This book provides essential insights into a range of newly developed numerical optimization techniques with a view to solving real-world problems. Many of these problems can be modeled as nonlinear optimization problems, but due to their complex nature, it is not always possible to solve them using conventional optimization theory. Accordingly, the book discusses the design and applications of non-conventional numerical optimization techniques, including the design of benchmark functions and the implementation of these techniques to solve real-world optimization problems. The book's twenty chapters examine various interesting research topics in this area, including: Pi fraction-based optimization of the Pantoja-Bretones-Martin (PBM) antenna benchmarks; benchmark function generators for single-objective robust optimization algorithms; convergence of gravitational search algorithms on linear and quadratic functions; and an algorithm for the multi-variant evolutionary synthesis of nonlinear models with real-valued chromosomes. Delivering on its promise to explore real-world scenarios, the book also addresses the seismic analysis of a multi-story building with optimized damper properties; the application of constrained spider monkey optimization to solve portfolio optimization problems; the effect of upper body motion on a bipedal robot's stability; an ant colony algorithm for routing alternate-fuel vehicles in multi-depot vehicle routing problems; enhanced fractal dimension-based feature extraction for thermal face recognition; and an artificial bee colony-based hyper-heuristic for the single machine order acceptance and scheduling problem. The book will benefit not only researchers, but also organizations active in such varied fields as Aerospace, Automotive, Biotechnology, Consumer Packaged Goods, Electronics, Finance, Business & Banking, Oil, Gas & Geosciences, and Pharma, to name a few.
This book provides an overview of intelligent decision-making techniques and discusses their application in production and retail operations. Manufacturing and retail enterprises have stringent standards for using advanced and reliable techniques to improve decision-making processes, since these processes have significant effects on the performance of relevant operations and the entire supply chain. In recent years, researchers have been increasingly focusing attention on using intelligent techniques to solve various decision-making problems. The opening chapters provide an introduction to several commonly used intelligent techniques, such as genetic algorithm, harmony search, neural network and extreme learning machine. The book then explores the use of these techniques for handling various production and retail decision-making problems, such as production planning and scheduling, assembly line balancing, and sales forecasting.
This book provides readers with a timely and comprehensive yet concise view on the field of fuzzy logic and its real-world applications. The chapters, written by authoritative scholars in the field, report on promising new models for data analysis, decision making, and systems modeling, with a special emphasis on their applications in management science. The book is a token of appreciation from the fuzzy research community to Professor Christer Carlsson for his long time research and organizational commitment, which have among other things resulted in the foundation and success of the Institute for Advanced Management Systems Research (IAMSR) at Abo Akademi University, in Abo (Turku), Finland. The book serves as timely guide for the fuzzy logic and operations research communities alike.
This book presents papers based on the presentations and discussions at the international workshop on Big Data Smart Transportation Analytics held July 16 and 17, 2016 at Tongji University in Shanghai and chaired by Professors Ukkusuri and Yang. The book is intended to explore a multidisciplinary perspective to big data science in urban transportation, motivated by three critical observations: The rapid advances in the observability of assets, platforms for matching supply and demand, thereby allowing sharing networks previously unimaginable. The nearly universal agreement that data from multiple sources, such as cell phones, social media, taxis and transit systems can allow an understanding of infrastructure systems that is critically important to both quality of life and successful economic competition at the global, national, regional, and local levels. There is presently a lack of unifying principles and methodologies that approach big data urban systems. The workshop brought together varied perspectives from engineering, computational scientists, state and central government, social scientists, physicists, and network science experts to develop a unifying set of research challenges and methodologies that are likely to impact infrastructure systems with a particular focus on transportation issues. The book deals with the emerging topic of data science for cities, a central topic in the last five years that is expected to become critical in academia, industry, and the government in the future. There is currently limited literature for researchers to know the opportunities and state of the art in this emerging area, so this book fills a gap by synthesizing the state of the art from various scholars and help identify new research directions for further study.
This book demonstrates the theoretical value and practical significance of systems science and its logic of thinking by presenting a rigorously developed foundation-a tool for intuitive reasoning, which is supported by both theory and empirical evidence, as well as practical applications in business decision making. Following a foundation of general systems theory, the book presents an applied method to intuitively learn system-sciences fundamentals. The third and final part examines applications of the yoyo model and the theoretical results developed earlier within the context of problems facing business decision makers by organically combining methods of traditional science, the first dimension of science, with those of systems science, the second dimension, as argued by George Klir in the 1990s. This text would benefit graduate students, researchers, or practitioners in the areas of mathematics, systems science or engineering, economics, and business decision science.
This monograph aims to familiarize readers with the problem of evaluating the quality and reliability of digital geographic information in terms of their use. It identifies the key requirements for the functionality of this information and describes the system of evaluating its quality and reliability. The whole text is supplemented by examples that document the impact of different quality of the information on the entire decision-making process in command and control systems at the rescue and military levels. The monograph is primarily intended for professionals who are responsible for the implementation of digital geographic information in command and control systems, or for those who use them in their work. For this reason, particular attention is paid especially to the user aspects of the digital geographic information used. Vaclav Talhofer is Full Professor of Cartography and Geoinformatics at the University of Defense in Brno, Czech Republic. Sarka Hoskova-Mayerova is Associate Professor of Mathematics at the University of Defense in Brno, Czech Republic. Alois Hofmann is a teacher and scientist of Cartography and Geoinformatics at the University of Defense in Brno, Czech Republic. All authors contributing to this book have been extensively studying the methods and procedures for the use of digital geographic information, especially in the environment of the Czech Armed Forces.
This is a new edition of Kleijnen's advanced expository book on statistical methods for the Design and Analysis of Simulation Experiments (DASE). Altogether, this new edition has approximately 50% new material not in the original book. More specifically, the author has made significant changes to the book's organization, including placing the chapter on Screening Designs immediately after the chapters on Classic Designs, and reversing the order of the chapters on Simulation Optimization and Kriging Metamodels. The latter two chapters reflect how active the research has been in these areas. The validation section has been moved into the chapter on Classic Assumptions versus Simulation Practice, and the chapter on Screening now has a section on selecting the number of replications in sequential bifurcation through Wald's sequential probability ration test, as well as a section on sequential bifurcation for multiple types of simulation responses. Whereas all references in the original edition were placed at the end of the book, in this edition references are placed at the end of each chapter. From Reviews of the First Edition: "Jack Kleijnen has once again produced a cutting-edge approach to the design and analysis of simulation experiments." (William E. BILES, JASA, June 2009, Vol. 104, No. 486)
Although several books or monographs on multiobjective optimization under uncertainty have been published, there seems to be no book which starts with an introductory chapter of linear programming and is designed to incorporate both fuzziness and randomness into multiobjective programming in a unified way. In this book, five major topics, linear programming, multiobjective programming, fuzzy programming, stochastic programming, and fuzzy stochastic programming, are presented in a comprehensive manner. Especially, the last four topics together comprise the main characteristics of this book, and special stress is placed on interactive decision making aspects of multiobjective programming for human-centered systems in most realistic situations under fuzziness and/or randomness. Organization of each chapter is briefly summarized as follows: Chapter 2 is a concise and condensed description of the theory of linear programming and its algorithms. Chapter 3 discusses fundamental notions and methods of multiobjective linear programming and concludes with interactive multiobjective linear programming. In Chapter 4, starting with clear explanations of fuzzy linear programming and fuzzy multiobjective linear programming, interactive fuzzy multiobjective linear programming is presented. Chapter 5 gives detailed explanations of fundamental notions and methods of stochastic programming including two-stage programming and chance constrained programming. Chapter 6 develops several interactive fuzzy programming approaches to multiobjective stochastic programming problems. Applications to purchase and transportation planning for food retailing are considered in Chapter 7. The book is self-contained because of the three appendices and answers to problems. Appendix A contains a brief summary of the topics from linear algebra. Pertinent results from nonlinear programming are summarized in Appendix B. Appendix C is a clear explanation of the Excel Solver, one of the easiest ways to solve optimization problems, through the use of simple examples of linear and nonlinear programming.
This book shows how transit assignment models can be used to describe and predict the patterns of network patronage in public transport systems. It provides a fundamental technical tool that can be employed in the process of designing, implementing and evaluating measures and/or policies to improve the current state of transport systems within given financial, technical and social constraints. The book offers a unique methodological contribution to the field of transit assignment because, moving beyond "traditional" models, it describes more evolved variants that can reproduce:* intermodal networks with high- and low-frequency services;* realistic behavioural hypotheses underpinning route choice;* time dependency in frequency-based models; and* assumptions about the knowledge that users have of network conditionsthat are consistent with the present and future level of information that intelligent transport systems (ITS) can provide. The book also considers the practical perspective of practitioners and public transport operators who need to model and manage transit systems; for example, the role of ITS is explained with regard to their potential in data collection for modelling purposes and validation techniques, as well as with regard to the additional data on network patronage and passengers' preferences that influences the network-management and control strategies implemented. In addition, it explains how the different aspects of network operations can be incorporated in traditional models and identifies the advantages and disadvantages of doing so. Lastly, the book provides practical information on state-of-the-art implementations of the different models and the commercial packages that are currently available for transit modelling. Showcasing original work done under the aegis of the COST Action TU1004 (TransITS), the book provides a broad readership, ranging from Master and PhD students to researchers and from policy makers to practitioners, with a comprehensive tool for understanding transit assignment models.
This research contributes to the growing body of knowledge as well as offers significant theoretical contributions and policy implications. As far as the researcher's knowledge, this is the first research of its type that investigates the relationship between digital enabled transformation of government and citizens' trust & confidence in government. The proposed conceptual model also makes a novel contribution at a conceptual level, which can be used as a frame of reference by researchers as well as practitioners when planning ICT-enabled transformation projects in government. The context of the research is the Kingdom of Bahrain, the top-ranked country in ICT adoption in the Gulf Cooperation Council (GCC) region.
Assembly Line Planning and Control describes the basic fundamentals of assembly lines for single model lines, mixed model make-to-stock lines, mixed model make-to-order lines and for one-station assembly. The book shows how to select the quantity of units to schedule for a shift duration, compute the number of operators needed on a line, set the conveyor speed, coordinate the main line with sub-assembly lines, assign the work elements to the operators on the line, sequence the models down the line, sequence the jobs down the line, calculate the part and component requirements for a line and for each station, determine the replenish needs of the parts and components from the suppliers, compute the similarity between the models being produced and show applications, use learning curves to estimate time and costs of assembly, and measure the efficiency of the line. The material is timeless and the book will never become obsolete. The author presents solutions with easy-to-understand numerical examples that can be applied to real-life applications. "
This volume presents advanced techniques to modeling markets, with a wide spectrum of topics, including advanced individual demand models, time series analysis, state space models, spatial models, structural models, mediation, models that specify competition and diffusion models. It is intended as a follow-on and companion to Modeling Markets (2015), in which the authors presented the basics of modeling markets along the classical steps of the model building process: specification, data collection, estimation, validation and implementation. This volume builds on the concepts presented in Modeling Markets with an emphasis on advanced methods that are used to specify, estimate and validate marketing models, including structural equation models, partial least squares, mixture models, and hidden Markov models, as well as generalized methods of moments, Bayesian analysis, non/semi-parametric estimation and endogeneity issues. Specific attention is given to big data. The market environment is changing rapidly and constantly. Models that provide information about the sensitivity of market behavior to marketing activities such as advertising, pricing, promotions and distribution are now routinely used by managers for the identification of changes in marketing programs that can improve brand performance. In today's environment of information overload, the challenge is to make sense of the data that is being provided globally, in real time, from thousands of sources. Although marketing models are now widely accepted, the quality of the marketing decisions is critically dependent upon the quality of the models on which those decisions are based. This volume provides an authoritative and comprehensive review, with each chapter including: * an introduction to the method/methodology * a numerical example/application in marketing * references to other marketing applications * suggestions about software. Featuring contributions from top authors in the field, this volume will explore current and future aspects of modeling markets, providing relevant and timely research and techniques to scientists, researchers, students, academics and practitioners in marketing, management and economics.
This book provides an overview of the concept of economic psychology from behavioral and mathematical perspectives and related theoretical and empirical findings. Economic psychology is defined briefly as a general term for descriptive theories to explain the psychological processes of microeconomic behaviors and macroeconomic phenomena. However, the psychological methodology and knowledge of economic psychology have also been applied widely in such fields as economics, business administration, and engineering, and they are expected to become increasingly useful in the future-a trend suggested in several eminent scholars' studies. The book explains the numerous behavioral and mathematical models of economic psychology related to micro- and macroeconomic phenomena that have been proposed in the past, and introduces new models that are useful to explain human economic behaviors. It concludes with speculations about the future of modern economic psychology, referring to its connection with fields related to neuroscience, such as neuroeconomics, which have been developed in recent years. Readers require no advanced expertise; nonetheless, an introductory understanding of psychology, business administration, and economics, and a high- school-graduate level of mathematics are useful. To aid readers, each chapter includes a bibliography, which can be referred for more details related to economic psychology.
This book, companion to Foundations of Location Analysis (Springer, 2011), highlights some of the applications of location analysis within the spheres of businesses, those that deal with public services and applications that deal with law enforcement and first responders. While the Foundations book reviewed the theory and first contributions, this book describes how different location techniques have been used to solve real problems. Since many real problems comprise multiple objectives, in this book there is more presence of tools from multicriteria decision making and multiple-objective optimization. The section on business applications looks at such problems as locating bank branches, the potential location of a logistics park, sustainable forest management and layout problems in a hospital, a much more difficult type of problem than mere location problems. The section on public services presents chapters on the design of habitats for wildlife, control of forest fires, the location of intelligent sensors along highways for timely emergency response, locating breast cancer screening centers, an economic analysis for the locations of post offices and school location. The final section of the book includes chapters on the well-known problem of locating fire stations, a model for the location of sensors for travel time information, the problem of police districting, locations of jails, location of Coast Guard vessels and finally, a survey of military applications of location analysis throughout different periods of recent history.
This book presents the latest developments and breakthroughs in fuzzy theory and performance prediction of queuing and reliability models by using the stochastic modeling and optimization theory. The main focus is on analytics that use fuzzy logic, queuing and reliability theory for the performance prediction and optimal design of real-time engineering systems including call centers, telecommunication, manufacturing, service organizations, etc. For the day-to-day as well as industrial queuing situations and reliability prediction of machining parts embedded in computer, communication and manufacturing systems, the book assesses various measures of performance and effectiveness that can provide valuable insights and help arrive at the best decisions with regard to service and engineering systems. In twenty chapters, the book presents both theoretical developments and applications of the fuzzy logic, reliability and queuing models in a diverse range of scenarios. The topics discussed will be of interest to researchers, educators and undergraduate students in the fields of Engineering, Business Management, and the Mathematical Sciences. |
![]() ![]() You may like...
Many-Criteria Optimization and Decision…
Dimo Brockhoff, Michael Emmerich, …
Hardcover
R4,461
Discovery Miles 44 610
Operations Management
Nigel Slack, Alistair Brandon-Jones, …
Paperback
29th European Symposium on Computer…
Anton A Kiss, Edwin Zondervan, …
Hardcover
R11,775
Discovery Miles 117 750
Mining New Gold-Managing Your Business…
Penny Jeffrey And Gillian Garbus
Hardcover
R657
Discovery Miles 6 570
Handbook of Innovation & Appropriate…
Philippe Regnier, Daniel Frey, …
Hardcover
R5,143
Discovery Miles 51 430
Handbook of Research Methods for Supply…
Stephen Childe, Anabela Soares
Hardcover
R6,939
Discovery Miles 69 390
|