![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Energy technology & engineering > Fossil fuel technologies > Petroleum technology
The development of oil and gas fields offshore requires specialized pipeline equipment. The structures must be strong enough to with stand the harshest environments, and ensure that production is not interrupted and remains economically feasible. However, recent events in the Gulf of Mexico have placed a new importance on maintenance and reliability.A new section; Condition Based Maintenance (CBM), introduces the subject of maintenance, written by Tian Ran Lin, Queensland University of Technology, and Yong Sun, CSIRO Earth Science and Resource Engineering. Two of the main objectives of CBM is maximizing reliability while preventing major or minor equipment malfunction and minimizing maintenance costs. In this new section, the authors deal with the multi-objective condition based maintenance optimization problem. CBM provides two major advantages: (1) an efficient approach for weighting maintenance objectives, and (2) a method for specifying physical methods for achieving those objectives. Maintenance cost and reliability objectives are calculated based on proportional hazards model and a control limit CBM replacement policy. Written primarily for engineers and management personnel working
on offshore and deepwater oil and gas pipelines, this book covers
the fundamentals needed to design, Install, and commission pipeline
projects. This new section along with a thorough update of the
existing chapters represents a 30% increase in information over the
previous edition.
"Geophysics for Petroleum Engineers" focuses on the applications of geophysics in addressing petroleum engineering problems. It explores the complementary features of geophysical techniques in better understanding, characterizing, producing and monitoring reservoirs. This book introduces engineers to geophysical methods so that
they can communicate with geophysicist colleagues and appreciate
the benefits of their work. These chapters describe fundamentals of
geophysical techniques, their physical bases, their applications
and limitations, as well as possible pitfalls in their misuse. Case
study examples illustrate the integration of geophysical data with
various other data types for predicting and describing reservoir
rocks and fluid properties. The examples come from all over the
world, with several case histories from the fields in the Middle
East.
At 170 billion barrels, Canada's Oil Sands are the third largest reserves of developable oil in the world. The Oil Sands now produce about 1.6 million barrels per day, with production expected to double by 2025 to about 3.7 million barrels per day. The Athabasca Oil Sands Region (AOSR) in northeastern Alberta is the largest of the three oil sands deposits. Bitumen in the oil sands is recovered through one of two primary methods mining and drilling. About 20 per cent of the reserves are close to the surface and can be mined using large shovels and trucks. Of concern are the effects of the industrial development on the environment. Both human-made and natural sources emit oxides of sulphur and nitrogen, trace elements and persistent organic compounds. Of additional concern are ground level ozone and greenhouse gases. Because of the requirement on operators to comply with the air
quality regulatory policies, and to address public concerns, the
not-for-profit, multi-stakeholder Wood Buffalo Environmental
Association (WBEA) has since 1997 been closely monitoring air
quality in AOSR. In 2008, WBEA assembled a distinguished group of
international scientists who have been conducting measurements and
practical research on various aspects of air emissions and their
potential effects on terrestrial receptors. This book is a
synthesis of the concepts and results of those on-going studies. It
contains 19 chapters ranging from a global perspective of energy
production, measurement methodologies and behavior of various air
pollutants during fossil fuel production in a boreal forest
ecosystem, towards designing and deploying a multi-disciplinary,
proactive, and long-term environmental monitoring system that will
also meet regulatory expectations.
This handbook is vital for understanding the origin of
deep-water sandstones, emphasizing sandy-mass transport deposits
(SMTDs) and bottom-current reworked sands (BCRSs) in petroleum
reservoirs. This cutting-edge perspective, a pragmatic alternative
to the conventional turbidite concepts, is crucial because the
turbidite paradigm is built on a dubious foundation without
empirical data on sandy turbidity currents in modern oceans. In the
absence of evidence for sandy turbidity currents in natural
environments, elegant theoretical models and experimental
observations of turbidity currents are irrelevant substitutes for
explaining the origin of sandy deposits as "turbidites." In
documenting modern and ancient SMTDs (sandy slides, sandy slumps,
and sandy debrites) and BCRSs (deposits of thermohaline contour]
currents, wind-driven currents, and tidal currents), the author
describes and interprets core and outcrop (1:20 to 1:50 scale) from
35 case studies worldwide (which include 32 petroleum reservoirs),
totaling more than 10,000 m in cumulative thickness, carried out
during the past 36 years (1974-2010). The book dispels myths about
the importance of sea level lowstand and provides much-needed
clarity on the triggering of sediment failures by earthquakes,
meteorite impacts, tsunamis, and cyclones with implications for the
distribution of deep-water sandstone petroleum reservoirs.
This new and improved edition focuses on providing practical information and tools that engineers can use to maximize the profitability and reliability of their fluid catalytic cracking operations. The updated chapters and new content deliver expertise and know-how to an industry that faces significant cost cutting in capital expenditure and R&D, along with the retirement of technical specialists who are taking existing knowledge out of the industry with them. This FCC Handbook provides a valuable easy-to-understand resource for both experienced and inexperienced engineers and anyone else associated with the FCC process. This book gives those who need a quick reference, and gives those who are developing their skills and knowledge trusted information that will help them succeed with their projects. Key features include; Common examples that will enable engineers to achieve increased unit savings Updated with the latest process technologies for handling residue and "deep" hydrotreated feedstock New chapter discussing refractory lining, providing an introduction to the different refractories employed in FCC units, examples of various refractory linings and associated anchors, installation techniques as well as some guidelines for proper drying and curing refractory lining. New troubleshooting chapter, increasing the practical application of the book, along with new visual references to operation optimization About the author; Reza Sadeghbeigi is President of RMS Engineering, Inc. a Houston, Texas based engineering firm providing high-level technical expertise in the area of fluid catalytic cracking (FCC) and related processes. Reza has 35 years of hands-on FCC experience in the refining
industry, focusing on technical services, troubleshooting, process
design, and project management, including major FCC revamps. A
licensed Professional Engineer (P.E.) in Texas and Louisiana, Reza
has published technical papers and produced industry seminars on
refining and catalytic cracking operations and conducted numerous
client customized FCC training courses and public seminars. The only practical approach, with tools and techniques for those with FCC responsibilities to help maximize the profitability and reliability of fluid catalytic cracking operations. Updated throughout, with new material focusing on latest developments, the shift to using FCC to process lower quality crudes, and new applied material on troubleshooting. Provides a reference for both experienced engineers who need a quick reference, as well as providing those who are developing their skills and knowledge with access to trusted information that will help them succeed in their projects.
Although many papers have been published describing methods for the inorganic analysis of petroleum no book has previously appeared devoted exclusively to this subject. The purpose of this work is to provide a laboratory handbook for industrial analysts of various degrees of professional training covering the determination of those elements commonly occurring in various types of petroleum products. The procedures represent, from the author's point of view, a reasonable compromise among the usual conflicting interests of speed, accuracy, and cost, and emphasize manufacturing rather than research applications. CONTENTS: Introduction 1. The Inorganic Components of Petroleum 2. Preparation of Samples for Inorganic Analysis: Direct Ashing, Soft Ashing and Wet Oxidation, Direct Wet Oxidation, Fusion with Pyrosulfate, The Oxygen Bomb, The Peroxide Bomb, Sodium Dehalogenation, Extraction Methods, Combustion Methods, Alkaline Sulfide Treatment, Direct Methods, Combustion Tube, Emission Spectrograph, X-rays 3. Aluminum: Colorimetric Determination, Gravimetric Determination 4. Arsenic 5. Barium: Determination in New Lubricating Oils, Determination in Used Lubricating Oils 6. Boron: Colorimetric Determination, Alkalimetric Determination 7. Calcium: Determination in New Lubricating Oils and Additives, Determination in Used Lubricating Oils, Estimation of Smaller Concentrations 8. Chromium 9. Cobalt: Electrolytic Determination, Volumetric Determination 10. Copper: Determination in Gasoline, Determination in Naphthenate Driers, Determination in Distillates, Determination in Used Lubricating Oils 11. The Halogens: Peroxide Bomb Combustion, Sodium Dehalogenation, Extraction Procedures, Wickbold Oxyhydrogen Combustion, Potentiometric Determination of Bromide and Chloride, Colorimetric Determination of Chloride, Volumetric Determination of Fluoride 12. Iron: Determination in Distillates, Determination in Used Lubricating Oils, Determination in Naphthenate Driers, Colorimetric Determination, Volumetric Determination 13. Lead: Determination in Naphthenate Driers, Determination in Light Distillates, Determination in Lubricating Oils 14. Manganese 15. Molybdenum: Determination in New Lubricating Oils, Determination in Used Lubricating Oils 16. Nickel: Determination in Distillates, Gravimetric Determination 17. Nitrogen: Determination of Total Nitrogen by Kjeldahl Method, Determination of Basic Nitrogen, Determination of Quaternary Ammonium Compounds 18. Phosphorus: Decomposition by Ashing in Presence of Zinc Oxide, Colorimetric Methods, Alkalimetric Determination of Phosphorus 19. Selenium: Colorimetric Determination, Volumetric Determination 20. Silicon: Determination in Synthetic Oils, Determination of Silica in Used Lubricating Oils 21. Sodium: Decomposition of Sample by Direct Ashing, Gravimetric Determination, Determination by Flame Photometer 22. Sulfur: Determination by Peroxide Fusion Bomb, Determination by Wickbold Oxyhydrogen Combustion 23. Vanadium: Determination in Distillates, Determination in Fuel Oils, Volumetric Determination 24. Zinc: Determination in Additives and Naphthenate Driers, Determination in New and Used Lubricating Oils, Potentiometric Determination, Gravimetric Determination; Appendix; Wickbold Apparatus for Oxyhydrogen Combustion; Index
This book presents the proceedings of the 3rd International Conference on Integrated Petroleum Engineering and Geosciences 2014 (ICIPEG2014). Topics covered on the petroleum engineering side include reservoir modeling and simulation, enhanced oil recovery, unconventional oil and gas reservoirs, production and operation. Similarly geoscience presentations cover diverse areas in geology, geophysics palaeontology and geochemistry. The selected papers focus on current interests in petroleum engineering and geoscience. This book will be a bridge between engineers, geoscientists, academicians and industry.
This practical guide is designed to help engineers and operators
develop a ?feel? for selection, specification, operating
parameters, and trouble-shooting separators; form an understanding
of the uncertainties and assumptions inherent in operating the
equipment. The goal is to help familiarize operators with the
knowledge and tools required to understand design flaws and solve
everyday operational problems for types of separators.
This book presents the proceedings of the 4th International Conference on Integrated Petroleum Engineering and Geosciences 2016 (ICIPEG 2016), held under the banner of World Engineering, Science & Technology Congress (ESTCON 2016) at Kuala Lumpur Convention Centre from August 15 to 17, 2016. It presents peer-reviewed research articles on exploration, while also exploring a new area: shale research. In this time of low oil prices, it highlights findings to maintain the exchange of knowledge between researchers, serving as a vital bridge-builder between engineers, geoscientists, academics, and industry.
This book discusses the progress that is being made through innovations in instrumental measurements of geologic and geochemical systems and their study using modern mathematical modeling. It covers the systems approach to understanding sedimentary rocks and their role in evolution and containment of subsurface fluids.
A timely, hands-on guide to environmental issues and regulatory
standards for the petroleum industry
For the practitioner, this volume is a valuable tool for predicting
reservoir flow in the most efficient and profitable manner
possible, using quantitative methods rather than anecdotal and
outdated methods. For the student, this volume offers insight not
covered in other textbooks.
An Introduction to Petroleum Reservoir Simulation is aimed toward graduate students and professionals in the oil and gas industry working in reservoir simulation. It begins with a review of fluid and rock properties and derivation of basic reservoir engineering mass balance equations. Then equations and approaches for numerical reservoir simulation are introduced. The text starts with simple problems (1D, single phase flow in homogeneous reservoirs with constant rate wells) and subsequent chapters slowly add complexities (heterogeneities, nonlinearities, multi-dimensions, multiphase flow, and multicomponent flow). Partial differential equations and finite differences are then introduced but it will be shown that algebraic mass balances can also be written directly on discrete grid blocks that result in the same equations. Many completed examples and figures will be included to improve understanding. An Introduction to Petroleum Reservoir Simulation is designed for those with their first exposure to reservoir simulation, including graduate students in their first simulation course and working professionals who are using reservoir simulators and want to learn more about the basics.
Reserves Estimation for Geopressured Gas Reservoirs aims to introduce the principles and methods for calculating reserves of geopressured gas reservoirs with the material balance method, presenting advantages, disadvantages and applicable conditions of various methods. The book, based on manual analysis, explains methods and calculation steps with more than 30 gas reservoir examples. It will help gas reservoir engineers learn basic principles and calculation methods and familiarize themselves with the content of the software Black Box, which in turn helps improve the level of gas field performance analysis and the level of gas field development. |
You may like...
Condition - The Geometry of Numerical…
Peter Burgisser, Felipe Cucker
Hardcover
R4,357
Discovery Miles 43 570
Memetic Computation - The Mainspring of…
Abhishek Gupta, Yew Soon Ong
Hardcover
R3,984
Discovery Miles 39 840
|