![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Energy technology & engineering > Fossil fuel technologies > Petroleum technology
Seismic Data Analysis Techniques in Hydrocarbon Exploration explains the fundamental concepts and skills used to acquire seismic data in the oil industry and the step-by-step techniques necessary to extract the sections that trap hydrocarbons as well as seismic data interpretation skills. It enhances the ability to interpret seismic data and use that data for basin evaluation, structural modeling of a fault, reservoir characterization, rock physics analysis, field development, and production studies. Understanding and interpreting seismic data is critical to oil
and gas exploration companies. Arming young geoscientists with a
reference that covers the key principles of seismic data analysis
will enhance their job knowledge, skills and performance. A
fundamental grasp of seismic data enhances employability and aids
scientists in functioning effectively when working with seismic
data in industry.
"Enhanced Oil Recovery Field Case Studies" bridges the gap between theory and practice in a range of real-world EOR settings. Areas covered include steam and polymer flooding, use of foam, in situ combustion, microorganisms, "smart water"-based EOR in carbonates and sandstones, and many more. Oil industry professionals know that the key to a successful
enhanced oil recovery project lies in anticipating the differences
between plans and the realities found in the field. This book aids
that effort, providing valuable case studies from more than 250 EOR
pilot and field applications in a variety of oil fields. The case
studies cover practical problems, underlying theoretical and
modeling methods, operational parameters, solutions and sensitivity
studies, and performance optimization strategies, benefitting
academicians and oil company practitioners alike.
The majority of the cost-savings for any oil production facility
is the prevention of failure in the production equipment such as
pressure vessels. Money lost through lost production far outweighs
expenses associated with maintenance and proper operation. However,
many new engineers lack the necessary skills to effectively find
and troubleshoot operating problems while experienced engineers
lack knowledge of the latest codes and standards. The fifth book in
the Field Manual Series, the "Pressure Vessel Operations Field
Manual" provides new and experienced engineers with the latest
tools to alter, repair and re-rate pressure vessels using ASME,
NBIC and API 510 codes and standards. How to select the appropriate vessel specifications, evaluate associated reports and determine allowable stresses Calculations for stresses in pressure vessels Select the appropriate materials of construction for a pressure vessel Design pressure vessels using the ASME Code Section VIII, Division 1 and 2 to best fit the circumstance
From upstream to downstream, heat exchangers are utilized in
every stage of the petroleum value stream. An integral piece of
equipment, heat exchangers are among the most confusing and
problematic pieces of equipment in petroleum processing operations.
This is especially true for engineers just entering the field or
seasoned engineers that must keep up with the latest methods for
in-shop and in-service inspection, repair, alteration and re-rating
of equipment. The objective of this book is to provide
engineerswith sufficient information to make better logical choices
in designing and operating the system. "Heat Exchanger Equipment
Field Manual" provides an indispensable means for the determination
of possible failures and for the recognition of the optimization
potential of the respective heat exchanger.
This book is the latest in a series of respected volumes that provides an up-to-date review of some of the major chemistry topics related to the oil and gas industry. Divided into four sections, it looks in turn at the latest developments in environmental issues, new technology, applications and flow assurance. This reflects the increasingly important role for chemical technologies in offshore, deep water and challenging environments, allied to developments of low environmental impact chemistry. Regulatory strategies are also discussed, from both the governmental and operational perspective. Overall, Chemistry in the Oil Industry VII presents the latest information on developments in the modern oil industry, which will have an impact on future cost-effectiveness and efficiency. It will be a valuable resource for professionals and consultants within the industry, as well as government agencies and laboratory staff.
Modern petroleum and petrotechnical engineering is increasingly challenging due to the inherently scarce and decreasing number of global petroleum resources. Exploiting these resources efficiently will require researchers, scientists, engineers and other practitioners to develop innovative mathematical solutions to serve as basis for new asset development designs. Deploying these systems in numerical models is essential to the future success and efficiency of the petroleum industry. Multiphysics modeling has been widely applied in the petroleum industry since the 1960s. The rapid development of computer technology has enabled the numerical applications of multiphysics modeling in the petroleum industry: its applications are particularly popular for the numerical simulation of drilling and completion processes. This book covers theory and numerical applications of multiphysical modeling presenting various author-developed subroutines, used to address complex pore pressure input, complex initial geo-stress field input, etc. Some innovative methods in drilling and completion developed by the authors, such as trajectory optimization and a 3-dimensional workflow for calculation of mud weight window etc, are also presented. Detailed explanations are provided for the modeling process of each application example included in the book. In addition, details of the completed numerical models data are presented as supporting material which can be downloaded from the website of the publisher. Readers can easily understand key modeling techniques with the theory of multiphysics embedded in examples of applications, and can use the data to reproduce the results presented. While this book would be of interest to any student, academic or professional practitioner of engineering, mathematics and natural science, we believe those professionals and academics working in civil engineering, petroleum engineering and petroleum geomechanics would find the work especially relevant to their endeavors.
Reservoir management is concerned with the geoscience and reservoir/production engineering required to plan and optimize the development of discovered or producing oil and gas assets. One of the only books to cover both management and engineering issues, Advanced Reservoir Management and Engineering is redesigned to be the only book you need throughout your career. Written by two of the industry's best-known and well respected reservoir engineers and managers, this new edition offers readers a complete guide for formulating workflow solutions on a day to day bases. Authoritative in its approach, the book begins with the theory and practice of transient flow analysis and offers a brief but thorough hands-on guide to gas and oil well testing. Chapter two documents water influx models and their practical applications in conducting comprehensive field studies, widely used throughout the industry. Essential topics such as Type-Curve Analysis, unconventional gas reservoirs, and gas hydrates are also covered. The book moves on to provide a clear exposition of key economic and financial management methods for evaluation criteria and cash flow analysis, analysis of fixed capital investments and advanced evaluation approaches. This is followed by a frank discussion of advanced evaluation approaches such as integration of decision analysis and professional ethics. Readers will find the website a valuable guide for enhancing their understanding of different techniques used for predicting reservoir performance and cost. The website will also include information such as properties, tables and simple calculations. This combination book and website arrangement will prove particularly useful to new professionals interested in increasing their skills or more experienced professional wishing to increase their knowledge of current industry best practices. The 2nd Edition of the book includes 3 new management chapters,
representing a 30% increase over the previous edition. The new
subjects include step by step approach to cash flow analysis,
analysis of fixed capital investments, cash flow consequences,
maintenance as well as a detailed approach to managing working
capital. This is followed by a clear exposition of advanced
evaluation approaches such as integration of decision analysis and
economic evaluation and professional ethics.
Once a natural gas or oil well is drilled, and it has been verified that commercially viable, it must be "completed" to allow for the flow of petroleum or natural gas out of the formation and up to the surface. This process includes: casing, pressure and temperature evaluation, and the proper instillation of equipment to ensure an efficient flow out of the well. In recent years, these processes have been greatly enhanced by new technologies. "Advanced Well Completion Engineering" summarizes and explains these advances while providing expert advice for deploying these new breakthrough engineering systems. The book has two themes: one, the idea of preventing damage, and
preventing formation from drilling into an oil formation to putting
the well introduction stage; and two, the utilization of nodal
system analysis method, which optimizes the pressure distribution
from reservoir to well head, and plays the sensitivity analysis to
design the tubing diameters first and then the production casing
size, so as to achieve whole system optimization. With this book,
drilling and production engineers should be able to improve
operational efficiency by applying the latest state of the art
technology in all facets of well completion during development
drilling-completion and work over operations.
As global consumption of fossil fuels such as oil increases, previously abundant sources have become depleted or plagued with obstructions. Asphaltene deposition is one of such obstructions which can significantly decrease the rate of oil production. This book offers concise yet thorough coverage of the complex problem of asphaltene precipitation and deposition in oil production. It covers fundamentals of chemistry, stabilization theories and mechanistic approaches of asphaltene behavior at high temperature and pressure. Asphaltene Deposition: Fundamentals, Prediction, Prevention, and Remediation explains techniques for experimental determination of asphaltene precipitation and deposition and different modeling tools available to forecast the occurrence and magnitude of asphaltene deposition in a given oil field. It discusses strategies for mitigation of asphaltene deposition using chemical inhibition and corresponding challenges, best practices for asphaltene remediation, current research, and case studies.
Shale gas and/or oil play identification is subject to many screening processes for characteristics such as porosity, permeability, and brittleness. Evaluating shale gas and/or oil reservoirs and identifying potential sweet spots (portions of the reservoir rock that have high-quality kerogen content and brittle rock) requires taking into consideration multiple rock, reservoir, and geological parameters that govern production. The early determination of sweet spots for well site selection and fracturing in shale reservoirs is a challenge for many operators. With this limitation in mind, Optimization of Hydraulic Fracture Stages and Sequencing in Unconventional Formations develops an approach to improve the industry's ability to evaluate shale gas and oil plays and is structured to lead the reader from general shale oil and gas characteristics to detailed sweet-spot classifications. The approach uses a new candidate selection and evaluation algorithm and screening criteria based on key geomechanical, petrophysical, and geochemical parameters and indices to obtain results consistent with existing shale plays and gain insights on the best development strategies going forward. The work introduces new criteria that accurately guide the development process in unconventional reservoirs in addition to reducing uncertainty and cost.
During the upgrading of heavy petroleum, asphaltene is the most problematic impurity since it is the main cause of catalyst deactivation and sediments formation. Exploring many aspects related to asphaltenes composition and conversion, Asphaltenes: Chemical Transformation during Hydroprocessing of Heavy Oils highlights the various changes that these heavy and complex molecules undergo during catalytic hydroprocessing. After defining and characterizing asphaltene structure, the book examines the composition of petroleum and the processes and catalysts for upgrading heavy oils. It then details the characterization of asphaltenes after hydroprocessing and the effect of reaction conditions on their structures. The authors also analyze the deactivation and characterization of spent hydroprocessing catalysts as well as the role played by asphaltenes. They cover sediments formation during hydroprocessing and the role of asphaltenes on it. The final chapters describe the hydrocracking and kinetics of asphaltenes and the fractionation of heavy crudes and asphaltenes. Due to the increasing production of heavy crude oils, asphaltene has become one of the most studied molecules. This book provides a deep understanding of how asphaltenes transform during hydroprocessing, offering insight on designing catalysts and processing for the upgrading of heavy oils.
Oil and Gas Engineering for Non-Engineers explains in non-technical terms how oil and gas exploration and production are carried out in the upstream oil and gas industry. The aim is to help readers with no prior knowledge of the oil and gas industry obtain a working understanding of the field. Focuses on just the basics of what the layperson needs to know to understand the industry Uses non-technical terms, simple explanations, and illustrations to describe the inner workings of the field Explains how oil is detected underground, how well locations are determined, how drilling is done, and how wells are monitored during production Describes how and why oil and gas are separated from impurities before being sent to customers Aimed at non-engineers working within the oil and gas sector, this book helps readers get comfortable with the workings of this advanced field without the need for an advanced degree in the subject.
A bidirectional approach of detoxifying the liquid and gaseous effluents of oil refineries is elucidated in this thesis. Liquid effluents of oil refineries contain selenium oxyanions and phenol, while gaseous effluents contain CO/syngas. To remove the phenol and simultaneously reduce the selenite oxyanions, a fungal-bacterial co-culture of Phanerochaete chrysosporium and Delftia lacustris was developed. Two modes of co-cultures of the fungus and the bacterium were developed. Both cultures were investigated for phenol degradation and selenite reduction. In order to valorize the CO/syngas by bioconversion techniques. an anaerobic methanogenic sludge was acclimatized to use CO as the sole carbon substrate to produce acetic acid, butyric acid, and hexanoic acid. Later, the acids were metabolized at lower pH, producing alcohols ethanol, butanol and hexanol, confirming the successful enrichment strategy. The next experiment focused on the absence of the trace element tungsten, and consecutively selenium on the previously CO acclimatized sludge under the same operating conditions. An in-situ synthesized co-polymeric gel of N-ter-butyl-acrylamide and acrylic acid was used to recover ethanol, propanol and butanol from a synthetic fermentation broth. The scope of repeated use of the gel for alcohol recovery was investigated and 98% alcohol was recovered.
Although there is a shortage of light petroleum, there is plenty of heavy petroleum rich in macromolecules available, creating an increasing interest for processes that can convert these heavy oils to light oils. Process Chemistry of Petroleum Macromolecules provides the scientific basis for such processes. This book presents methods to determine the potential for improvement. Topics include characterization, thermal kinetics, phase behavior, and separation. Revealing that the science of petroleum macromolecules is much simpler and exciting than imagined, it also discusses macromolecules that self-associate, liquid crystalline phases, reactions triggered by phase separation, and solutes that are both dispersed and dissolved.
This book is one of a kind in the field of petroleum biorefining
and biological upgrade of petroleum; it presents a critical review
as well as an integrated overview of the potential biochemical
processes, bridging the gap between academia and industry. It
addresses today s demanding production challenges, taking into
account energy efficient and environmentally friendly processes,
and also looks at the future possibility of implementing new
refinery systems. Suitable for those practitioners the petroleum
industry, students and researchers interested in petroleum
biotechnology.
Petroleum Geochemistry and Exploration in the Afro-Asian Region includes 29 papers presented at the 6th International Conference on Petroleum Geochemistry and Exploration in the Afro-Asian Region. Petroleum geochemistry has played a crucial role in determining effective source rocks, classifying petroleum systems and delineating the geneses of conventional and unconventional oils and gases. By reference to petroleum geochemistry, the dynamic process of petroleum accumulations can be traced, which helps determining the prospecting target areas and reducing the exploration risk. Petroleum exploration is also enhanced by basin modeling and petroleum system classification, through the application of geochemical data. There has been significant progress in petroleum exploration due to the application of molecular geochemistry and biomarkers. Advances in this area include the identification and application of age-indicating biomarkers, the application of diamondoids in appraising the cracking level of crude oils, and the application of the compound-specific isotope analysis of biomarkers and the compound-specific isotope analysis of diamondoids (CSIAB and CSIAD) in oil-source correlation and quantitative identification of source-commingled oils. In reconstructing the history of oil and gas accumulations, three other techniques are of note: the dynamics of hydrocarbon generation, the dynamics of carbon isotopic fractionation and the analysis of liquid historical recordings (inclusions). Petroleum Geochemistry and Exploration in the Afro-Asian Region is an invaluable source of information for oil and gas explorers, petroleum geochemists and students of petroleum geochemistry. Researchers in petroleum companies and institutes will also find this publication useful.
Advances in processing methods are not only improving the quality and yield of lubricant base stocks, they are also reducing the dependence on more expensive crude oil starting materials. Process Chemistry of Lubricant Base Stocks provides a comprehensive understanding of the chemistry behind the processes involved in petroleum base stock production from crude oil fractions. This book examines hydroprocessing technologies that, driven by the demand for higher performance in finished lubricants, have transformed processing treatments throughout the industry. The author relates the properties of base stocks to their chemical composition and describes the process steps used in their manufacture. The book highlights catalytic processes, including hydrocracking, hydrofinishing, and catalytic dewaxing. It also covers traditional solvent-based separation methods used to remove impurities, enhance performance, and improve oxidation resistance. The final chapters discuss the production of Food Grade white oils and paraffins and the gas-to-liquids processes used to produce highly paraffinic base stocks via Fischer-Tropsch chemistry. Process Chemistry of Lubricant Base Stocks provides historical and conceptual background to the technologies used to make base stocks, thorough references, and a unique emphasis on chemical, not just engineering, aspects of lubricant processing-making this book an ideal and practical reference for scientists across a wide range of disciplines.
This volume looks at the recent progress of this technology as
reported in the 21 papers presented during the 219th National
Meeting of the ACS in New York, September 5-11, 2003.
This book details some of the problems experienced in the Soviet petroleum industry and includes a discussion on the downward trend in petroleum production. It reviews a geological assessment of the offshore region and presents a discussion of activities in the Soviet offshore waters.
"Crude Oil Chemistry "is foremost a scientifically exact guide to the full family of classical and modern analytical and process technologies in petroleum refining. In widening its vision also to incorporate a geological history of petroleum formation, present-day geopolitical and economic issues, and approaches to redress and improve the delicate ties between the petroleum industry and the environment, this reference succeeds as a total representation of the factors going into the chemistry of crude oil and their outward bound ramifications. The book thoroughly evaluates the chemistry and processing of low API gravity high-sulfur heavy crude oil increasingly relied on in the industry.
Well Production Performance Analysis for Shale Gas Reservoirs, Volume 66 presents tactics and discussions that are urgently needed by the petroleum community regarding unconventional oil and gas resources development and production. The book breaks down the mechanics of shale gas reservoirs and the use of mathematical models to analyze their performance.
This book is a concise but well-organized introduction to nanotechnology (NT) which the upstream oil industry is now vigorously adapting to develop its own unique applications for improved oilfield operations and, oil and gas production. Its reader will learn nanotechnology fundamentals, be introduced to important NT products and applications from other industries and learn about the current state of development of various NT applications in the upstream oil industry, which include innovative use of nanoparticles for enhanced oil recovery; drilling and completions; reservoir sensing; and production operations and flow assurance. Key Features Exclusive title on potential of nanoparticle-based agents and interventions for improving myriad of oilfield operations Unique guide for nanotechnology applications developers and users for oil and gas production Introduces nanotechnology for oil and gas managers and engineers Includes research data discussions relevant to field Offers a practical applications-oriented approach
"Second Edition expands and updates information on the technological aspects of refining heavy oils, residua, bitumen, and other high-sulfur feedstocks. Focuses on the range of next-generation refining processes."
Shale gas and/or oil play identification is subject to many screening processes for characteristics such as porosity, permeability, and brittleness. Evaluating shale gas and/or oil reservoirs and identifying potential sweet spots (portions of the reservoir rock that have high-quality kerogen content and brittle rock) requires taking into consideration multiple rock, reservoir, and geological parameters that govern production. The early determination of sweet spots for well site selection and fracturing in shale reservoirs is a challenge for many operators. With this limitation in mind, Optimization of Hydraulic Fracture Stages and Sequencing in Unconventional Formations develops an approach to improve the industry's ability to evaluate shale gas and oil plays and is structured to lead the reader from general shale oil and gas characteristics to detailed sweet-spot classifications. The approach uses a new candidate selection and evaluation algorithm and screening criteria based on key geomechanical, petrophysical, and geochemical parameters and indices to obtain results consistent with existing shale plays and gain insights on the best development strategies going forward. The work introduces new criteria that accurately guide the development process in unconventional reservoirs in addition to reducing uncertainty and cost.
During the upgrading of heavy petroleum, asphaltene is the most problematic impurity since it is the main cause of catalyst deactivation and sediments formation. Exploring many aspects related to asphaltenes composition and conversion, Asphaltenes: Chemical Transformation during Hydroprocessing of Heavy Oils highlights the various changes that these heavy and complex molecules undergo during catalytic hydroprocessing. After defining and characterizing asphaltene structure, the book examines the composition of petroleum and the processes and catalysts for upgrading heavy oils. It then details the characterization of asphaltenes after hydroprocessing and the effect of reaction conditions on their structures. The authors also analyze the deactivation and characterization of spent hydroprocessing catalysts as well as the role played by asphaltenes. They cover sediments formation during hydroprocessing and the role of asphaltenes on it. The final chapters describe the hydrocracking and kinetics of asphaltenes and the fractionation of heavy crudes and asphaltenes. Due to the increasing production of heavy crude oils, asphaltene has become one of the most studied molecules. This book provides a deep understanding of how asphaltenes transform during hydroprocessing, offering insight on designing catalysts and processing for the upgrading of heavy oils. |
![]() ![]() You may like...
Innovations, Developments, and…
Miltiadis D Lytras, Naif Aljohani, …
Hardcover
R6,651
Discovery Miles 66 510
Process Control in Textile Manufacturing
Abhijit Majumdar, A. Das, …
Hardcover
R5,043
Discovery Miles 50 430
No Code Required - Giving Users Tools to…
Allen Cypher, Mira Dontcheva, …
Paperback
R1,219
Discovery Miles 12 190
Guerrilla Data Analysis Using Microsoft…
Oz du Soleil, Bill Jelen
Paperback
R590
Discovery Miles 5 900
Research Anthology on Architectures…
Information R Management Association
Hardcover
R13,716
Discovery Miles 137 160
|