Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Energy technology & engineering > Fossil fuel technologies > Petroleum technology
Corrosion Atlas Case Studies: 2019 Edition provides engineers with expedient daily corrosion solutions for common industrial equipment, no matter the industry. Providing a purely operational level view, this reference consists of concise templated case studies categorized by material and includes all the necessary details surrounding the phenomenon. Additional reference listings for deeper understanding beyond the practical elements are also included, as well as a glossary. Rounded out with an introductory foundational layer of corrosion principles critical to all engineers, Corrosion Atlas Case Studies: 2019 Edition delivers the daily tools required for engineers today to solve their equipment's corrosion problems.
An Operations Guide to Safety and Environmental Management Systems (SEMS): Making Sense of BSEE SEMS Regulations gives engineers and managers a vital tool to understand, prepare and manage SEMS audits before, during and after they are done. At the core of the book are 17 elements stemming from regulations which are broken down in parts to help management learn the compliance measures. Elements are supported by practical case studies that analyze past failures and lessons learned. A helpful glossary, abbreviations list and additional section of references give offshore engineers and operators clear-and-concise direction on how to perform key actions in SEMS audits.
Machine Learning for Subsurface Characterization develops and applies neural networks, random forests, deep learning, unsupervised learning, Bayesian frameworks, and clustering methods for subsurface characterization. Machine learning (ML) focusses on developing computational methods/algorithms that learn to recognize patterns and quantify functional relationships by processing large data sets, also referred to as the "big data." Deep learning (DL) is a subset of machine learning that processes "big data" to construct numerous layers of abstraction to accomplish the learning task. DL methods do not require the manual step of extracting/engineering features; however, it requires us to provide large amounts of data along with high-performance computing to obtain reliable results in a timely manner. This reference helps the engineers, geophysicists, and geoscientists get familiar with data science and analytics terminology relevant to subsurface characterization and demonstrates the use of data-driven methods for outlier detection, geomechanical/electromagnetic characterization, image analysis, fluid saturation estimation, and pore-scale characterization in the subsurface.
Rifts and passive margins are extremely important for the petroleum industry, as they are areas of high sedimentation and can contain significant oil and gas resources. This book provides a comprehensive understanding of rifts and passive margins as a whole. It synthesises in one volume the existing information devoted to specific aspects of these vitally important hydrocarbon habitats. This collection of state-of-the-art information on the topic facilitates the better use of this knowledge to assess the risks of exploring and operating in these settings and the development of systematic and predictive hydrocarbon screening tools. The book will be invaluable for a broad range of readers, from advanced geology students and researchers to exploration geoscientists to exploration managers exploring for and developing hydrocarbon resources in analogous settings.
The characterisation of fluid transport properties of rocks is one of the most important, yet difficult, challenges of reservoir geophysics, but is essential for optimal development of hydrocarbon and geothermal reservoirs. This book provides a quantitative introduction to the underlying physics, application, interpretation, and hazard aspects of fluid-induced seismicity with a particular focus on its spatio-temporal dynamics. It presents many real data examples of microseismic monitoring of hydraulic fracturing at hydrocarbon fields and of stimulations of enhanced geothermal systems. The author also covers introductory aspects of linear elasticity and poroelasticity theory, as well as elements of seismic rock physics and mechanics of earthquakes, enabling readers to develop a comprehensive understanding of the field. Fluid-Induced Seismicity is a valuable reference for researchers and graduate students working in the fields of geophysics, geology, geomechanics and petrophysics, and a practical guide for petroleum geoscientists and engineers working in the energy industry.
Well Productivity Handbook: Vertical, Fractured, Horizontal, Multilateral, Multi-fractured, and Radial-Fractured Wells, Second Edition delivers updated examples and solutions for oil and gas well management projects. Starting with the estimation of fluid and reservoir properties, the content then discusses the modeling of inflow performance in wells producing different types of fluids. In addition, it describes the principle of well productivity analysis to show how to predict productivity of wells with simple trajectories. Then advancing into more complex trajectories, this new edition demonstrates how to predict productivity for more challenging wells, such as multi-lateral, multi-fractured and radial-fractured. Rounding out with sample problems to solve and future references to pursue, this book continues to give reservoir and production engineers the tools needed to tackle the full spectrum of completion types.
Applied Petroleum Geomechanics provides a bridge between theory and practice as a daily use reference that contains direct industry applications. Going beyond the basic fundamentals of rock properties, this guide covers critical field and lab tests, along with interpretations from actual drilling operations and worldwide case studies, including abnormal formation pressures from many major petroleum basins. Rounding out with borehole stability solutions and the geomechanics surrounding hydraulic fracturing and unconventional reservoirs, this comprehensive resource gives petroleum engineers a much-needed guide on how to tackle today's advanced oil and gas operations.
Hybrid Enhanced Oil Recovery Using Smart Waterflooding explains the latest technologies used in the integration of low-salinity and smart waterflooding in other EOR processes to reduce risks attributed to numerous difficulties in existing technologies, also introducing the synergetic effects. Covering both lab and field work and the challenges ahead, the book delivers a cutting-edge product for today's reservoir engineers.
Petrophysical Characterization and Fluids Transport in Unconventional Reservoirs presents a comprehensive look at these new methods and technologies for the petrophysical characterization of unconventional reservoirs, including recent theoretical advances and modeling on fluids transport in unconventional reservoirs. The book is a valuable tool for geoscientists and engineers working in academia and industry. Many novel technologies and approaches, including petrophysics, multi-scale modelling, rock reconstruction and upscaling approaches are discussed, along with the challenge of the development of unconventional reservoirs and the mechanism of multi-phase/multi-scale flow and transport in these structures.
Practical Wellbore Hydraulics and Hole Cleaning presents a single resource with explanations, equations and descriptions that are important for wellbore hydraulics, including hole cleaning. Involving many moving factors and complex issues, this book provides a systematic and practical summary of solutions, thus helping engineers understand calculations, case studies and guidelines not found anywhere else. Topics such as the impact of temperature and pressure of fluid properties are covered, as are vertical and deviated-from-vertical hole cleaning differences. The importance of bit hydraulics optimization, drilling fluid challenges, pressure drop calculations, downhole properties, and pumps round out the information presented. Packed with example calculations and handy appendices, this book gives drilling engineers the tools they need for effective bit hydraulics and hole cleaning operation design.
Compression Machinery for Oil and Gas is the go-to source for all oil and gas compressors across the industry spectrum. Covering multiple topics from start to finish, this reference gives a complete guide to technology developments and their applications and implementation, including research trends. Including information on relevant standards and developments in subsea and downhole compression, this book aids engineers with a handy, single resource that will help them stay up-to-date on the compressors needed for today's oil and gas applications.
Deepwater Drilling: Well Planning, Design, Engineering, Operations, and Technology Application presents necessary coverage on drilling engineering and well construction through the entire lifecycle process of deepwater wells. Authored by an expert with real-world experience, this book delivers illustrations and practical examples throughout to keep engineers up-to-speed and relevant in today's offshore technology. Starting with pre-planning stages, this reference dives into the rig's elaborate rig and equipment systems, including ROVs, rig inspection and auditing procedures. Moving on, critical drilling guidelines are covered, such as production casing, data acquisition and well control. Final sections cover managed pressure drilling, top and surface hole 'riserless' drilling, and decommissioning. Containing practical guidance and test questions, this book presents a long-awaited resource for today's offshore engineers and managers.
Describes feedstock evaluation and the effects of elemental, chemical and fractional composition. Details the equipment and components and possible impacts due to composition. Explores the process options and parameters involved in dewatering, desalting and distillation. Considers next generation processes and developments
Development of Volcanic Gas Reservoirs: The Theory, Key Technologies and Practice of Hydrocarbon Development introduces the geological and dynamic characteristics of development in volcanic gas reservoirs, using examples drawn from the practical experience in China of honing volcanic gas reservoir development. The book gives guidance on how to effectively develop volcanic gas reservoirs and similar complex types of gas reservoir. It introduces basic theories, key technologies and uses practical examples. It is the first book to systematically cover the theories and key technologies of volcanic gas reservoir development. As volcanic gas reservoirs constitute a new research area, the distribution and rules for development still being studied. Difficulties in well deployment and supportive development technology engender further challenges to development. However, in the past decade, research and development in the Songliao and Junggar Basins has led to marked achievements in volcanic gas reservoir development.
This book focuses on the underlying mechanisms of lost circulation and wellbore strengthening, presenting a comprehensive, yet concise, overview of the fundamental studies on lost circulation and wellbore strengthening in the oil and gas industry, as well as a detailed discussion on the limitations of the wellbore strengthening methods currently used in industry. It provides several advanced analytical and numerical models for lost circulation and wellbore strengthening simulations under realistic conditions, as well as their results to illustrate the capabilities of the models and to investigate the influences of key parameters. In addition, experimental results are provided for a better understanding of the subject. The book provides useful information for drilling and completion engineers wishing to solve the problem of lost circulation using wellbore strengthening techniques. It is also a valuable resource for industrial researchers and graduate students pursuing fundamental research on lost circulation and wellbore strengthening, and can be used as a supplementary reference for college courses, such as drilling and completion engineering and petroleum geomechanics.
Fundamentals of Enhanced Oil and Gas Recovery from Conventional and Unconventional Reservoirs delivers the proper foundation on all types of currently utilized and upcoming enhanced oil recovery, including methods used in emerging unconventional reservoirs. Going beyond traditional secondary methods, this reference includes advanced water-based EOR methods which are becoming more popular due to CO2 injection methods used in EOR and methods specific to target shale oil and gas activity. Rounding out with a chapter devoted to optimizing the application and economy of EOR methods, the book brings reservoir and petroleum engineers up-to-speed on the latest studies to apply. Enhanced oil recovery continues to grow in technology, and with ongoing unconventional reservoir activity underway, enhanced oil recovery methods of many kinds will continue to gain in studies and scientific advancements. Reservoir engineers currently have multiple outlets to gain knowledge and are in need of one product go-to reference.
Shale Gas and Tight Oil Reservoir Simulation delivers the latest research and applications used to better manage and interpret simulating production from shale gas and tight oil reservoirs. Starting with basic fundamentals, the book then includes real field data that will not only generate reliable reserve estimation, but also predict the effective range of reservoir and fracture properties through multiple history matching solutions. Also included are new insights into the numerical modelling of CO2 injection for enhanced oil recovery in tight oil reservoirs. This information is critical for a better understanding of the impacts of key reservoir properties and complex fractures.
Formation Damage during Improved Oil Recovery: Fundamentals and Applications bridges the gap between theoretical knowledge and field practice by presenting information on formation damage issues that arise during enhanced oil recovery. Multi-contributed technical chapters include sections on modeling and simulation, lab experiments, field case studies, and newly proposed technologies and methods that are related to formation damage during secondary and tertiary recovery processes in both conventional and unconventional reservoirs. Focusing on both the fundamental theories related to EOR and formation damage, this reference helps engineers formulate integrated and systematic designs for applying EOR processes while also considering formation damage issues.
This book provides a self-contained introduction to the simulation of flow and transport in porous media, written by a developer of numerical methods. The reader will learn how to implement reservoir simulation models and computational algorithms in a robust and efficient manner. The book contains a large number of numerical examples, all fully equipped with online code and data, allowing the reader to reproduce results, and use them as a starting point for their own work. All of the examples in the book are based on the MATLAB Reservoir Simulation Toolbox (MRST), an open-source toolbox popular popularity in both academic institutions and the petroleum industry. The book can also be seen as a user guide to the MRST software. It will prove invaluable for researchers, professionals and advanced students using reservoir simulation methods. This title is also available as Open Access on Cambridge Core.
The characterisation of fluid transport properties of rocks is one of the most important, yet difficult, challenges of reservoir geophysics, but is essential for optimal development of hydrocarbon and geothermal reservoirs. This book provides a quantitative introduction to the underlying physics, application, interpretation, and hazard aspects of fluid-induced seismicity with a particular focus on its spatio-temporal dynamics. It presents many real data examples of microseismic monitoring of hydraulic fracturing at hydrocarbon fields and of stimulations of enhanced geothermal systems. The author also covers introductory aspects of linear elasticity and poroelasticity theory, as well as elements of seismic rock physics and mechanics of earthquakes, enabling readers to develop a comprehensive understanding of the field. Fluid-Induced Seismicity is a valuable reference for researchers and graduate students working in the fields of geophysics, geology, geomechanics and petrophysics, and a practical guide for petroleum geoscientists and engineers working in the energy industry.
'The book is clearly organized. Only important facts are addressed; the sequence of the chapters is logical, the text is well-written and therefore, very readable. In addition, the meaning of geoscientific terms is clearly explained. Definitions are provided in a glossary which is easy to use. It is an excellent tool, which will be of value and benefit to the global petroleum community. I am pleased to recommend it.'M L BordenaveMouvOil SAThis book covers the fundamentals of the earth sciences and examines their role in controlling the global occurrence and distribution of hydrocarbon resources. It explains the principles, practices and the terminology associated with the upstream sector of the oil industry. Key topics include a look at the elements and processes involved in the generation and accumulation of hydrocarbons and demonstration of how geological and geophysical techniques can be applied to explore for oil and gas. There is detailed investigation into the nature and chemical composition of petroleum, and of surface and subsurface maps, including their construction and uses in upstream operations. Other topics include well-logging techniques and their use in determining rock and fluid properties, definitions and classification of resources and reserves, conventional oil and gas reserves, their quantification and global distribution as well as unconventional hydrocarbons, their worldwide occurrence and the resources potentially associated with them. Finally, practical analysis is concentrated on the play concept, play maps, and the construction of petroleum events charts and quantification of risk in exploration ventures.As the first volume in the Imperial College Lectures in Petroleum Engineering, and based on a lecture series on the same topic, An Introduction to Petroleum Geoscience provides the introductory information needed for students of the earth sciences, petroleum engineering, engineering and geoscience.This volume also includes an introduction to the series by Martin Blunt and Alain Gringarten, of Imperial College London.
Theory of Electromagnetic Well Logging provides a much-needed and complete analytical method for electromagnetic well logging technology. The book presents the physics and mathematics behind the effective measurement of rock properties using boreholes, allowing geophysicists, petrophysisists, geologists and engineers to interpret them in a more rigorous way. Starting with the fundamental concepts, the book then moves on to the more classic subject of wireline induction logging, before exploring the subject of LWD logging, concluding with new thoughts on electromagnetic telemetry. Theory of Electromagnetic Well Logging is the only book offering an in-depth discussion of the analytical and numerical techniques needed for expert use of those new logging techniques.
Solid Fuels and Heavy Hydrocarbon Liquids: Thermal Characterisation and Analysis, Second Edition integrates the developments that have taken place since publication of the first edition in 2006. This updated material includes new insights that help unify the thermochemical reactions of biomass and coal, as well as new developments in analytical techniques, including new applications in size exclusion chromatography, several mass spectrometric techniques, and new applications of nuclear magnetic spectroscopy to the characterization of heavy hydrocarbon liquids The topics covered are essential for the energy and fuels research community, including academics, students, and research engineers working in the power, oil and gas, and renewable energy industries.
Oil Spill Science and Technology, Second Edition, delivers a multi-contributed view on the entire chain of oil-spill related topics from oil properties and behaviors, to remote sensing through the management side of contingency planning and communicating oil spill risk perceptions. Completely new case studies are included with special attention to the Deepwater Horizon event, covering the impacts of wetlands and sand beaches, a mass balance approach, and the process for removing petroleum chemicals still trapped near Alabama beaches. Other new information on lingering oil left behind from the Exxon Valdez spill, the emergency system used in the Prestige incident, and coverage on the Heibei Spirit spill in Korea are also included. This updated edition combines technology with case studies to identify the current state of knowledge surrounding oil spills that will encourage additional areas of research that are left to uncover in this critical sector of the oil and gas industry. |
You may like...
Glycerine Production and Transformation…
Marco Frediani, Mattia Bartoli, …
Hardcover
Sustainable Alternative Syngas Fuel
Chaouki Ghenai, Abrar Inayat
Hardcover
|