![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Energy technology & engineering > Fossil fuel technologies > Petroleum technology
Gas Conversion: Methane and Alkane Activation Chemistry: Oxidative Coupling of Methane-A Progress Report (M.M. Bhasin et al.). Methane and Light Alkane (C2C4) Conversion over Metal Fluoride-Metal Oxide Catalyst System in Presence of Oxygen (H.L. Wan et al.). Oxidative Coupling of Methane over Sulfated Sr/La2O3 Catalysts (R. Herman et al.). The Oxidative Coupling of Methane over ZrO2, Doped Li/MgO Catalysts (G.C. Hoogendam et al.). Mechanism and Modeling of Methanerich Oxidation: Effect of Diffusion Limitations of Surface Produced Radicals on the C2 Selectivity in the Oxidative Coupling of Methane (G.B. Marin et al.). Effects of Product Separation on the Kinetics and Selectivity of Oxidative Coupling (R.B. Hall et al.). Reactive vs. Adsorbed Oxygen in Heterogeneous Oxidation of Methane over Li/MgO (A.J. Colussi et al.) Methane to Oxygenates and Chemicals: Selective Photooxidation of Methane to Formaldehyde Using Supported Group VB and VIB Oxide Catalysts (K. Wada et al.). A Study of the Iron/Sodalite Catalyst for the Partial Oxidation of Methane to Methanol (S. Betteridge et al.). Partial Oxidation of Methane to Formaldehyde over Vanadia Catalysts: Reaction Mechanism (B.K. Hodnett). 27 additional articles. Index.
Rifts and passive margins are extremely important for the petroleum industry, as they are areas of high sedimentation and can contain significant oil and gas resources. This book provides a comprehensive understanding of rifts and passive margins as a whole. It synthesises in one volume the existing information devoted to specific aspects of these vitally important hydrocarbon habitats. This collection of state-of-the-art information on the topic facilitates the better use of this knowledge to assess the risks of exploring and operating in these settings and the development of systematic and predictive hydrocarbon screening tools. The book will be invaluable for a broad range of readers, from advanced geology students and researchers to exploration geoscientists to exploration managers exploring for and developing hydrocarbon resources in analogous settings.
The characterisation of fluid transport properties of rocks is one of the most important, yet difficult, challenges of reservoir geophysics, but is essential for optimal development of hydrocarbon and geothermal reservoirs. This book provides a quantitative introduction to the underlying physics, application, interpretation, and hazard aspects of fluid-induced seismicity with a particular focus on its spatio-temporal dynamics. It presents many real data examples of microseismic monitoring of hydraulic fracturing at hydrocarbon fields and of stimulations of enhanced geothermal systems. The author also covers introductory aspects of linear elasticity and poroelasticity theory, as well as elements of seismic rock physics and mechanics of earthquakes, enabling readers to develop a comprehensive understanding of the field. Fluid-Induced Seismicity is a valuable reference for researchers and graduate students working in the fields of geophysics, geology, geomechanics and petrophysics, and a practical guide for petroleum geoscientists and engineers working in the energy industry.
The characterisation of fluid transport properties of rocks is one of the most important, yet difficult, challenges of reservoir geophysics, but is essential for optimal development of hydrocarbon and geothermal reservoirs. This book provides a quantitative introduction to the underlying physics, application, interpretation, and hazard aspects of fluid-induced seismicity with a particular focus on its spatio-temporal dynamics. It presents many real data examples of microseismic monitoring of hydraulic fracturing at hydrocarbon fields and of stimulations of enhanced geothermal systems. The author also covers introductory aspects of linear elasticity and poroelasticity theory, as well as elements of seismic rock physics and mechanics of earthquakes, enabling readers to develop a comprehensive understanding of the field. Fluid-Induced Seismicity is a valuable reference for researchers and graduate students working in the fields of geophysics, geology, geomechanics and petrophysics, and a practical guide for petroleum geoscientists and engineers working in the energy industry.
'The book is clearly organized. Only important facts are addressed; the sequence of the chapters is logical, the text is well-written and therefore, very readable. In addition, the meaning of geoscientific terms is clearly explained. Definitions are provided in a glossary which is easy to use. It is an excellent tool, which will be of value and benefit to the global petroleum community. I am pleased to recommend it.'M L BordenaveMouvOil SAThis book covers the fundamentals of the earth sciences and examines their role in controlling the global occurrence and distribution of hydrocarbon resources. It explains the principles, practices and the terminology associated with the upstream sector of the oil industry. Key topics include a look at the elements and processes involved in the generation and accumulation of hydrocarbons and demonstration of how geological and geophysical techniques can be applied to explore for oil and gas. There is detailed investigation into the nature and chemical composition of petroleum, and of surface and subsurface maps, including their construction and uses in upstream operations. Other topics include well-logging techniques and their use in determining rock and fluid properties, definitions and classification of resources and reserves, conventional oil and gas reserves, their quantification and global distribution as well as unconventional hydrocarbons, their worldwide occurrence and the resources potentially associated with them. Finally, practical analysis is concentrated on the play concept, play maps, and the construction of petroleum events charts and quantification of risk in exploration ventures.As the first volume in the Imperial College Lectures in Petroleum Engineering, and based on a lecture series on the same topic, An Introduction to Petroleum Geoscience provides the introductory information needed for students of the earth sciences, petroleum engineering, engineering and geoscience.This volume also includes an introduction to the series by Martin Blunt and Alain Gringarten, of Imperial College London.
Natural Gas Hydrates, Fourth Edition, provides a critical reference for engineers who are new to the field. Covering the fundamental properties, thermodynamics and behavior of hydrates in multiphase systems, this reference explains the basics before advancing to more practical applications, the latest developments and models. Updated sections include a new hydrate toolbox, updated correlations and computer methods. Rounding out with new case study examples, this new edition gives engineers an important tool to continue to control and mitigate hydrates in a safe and effective manner.
Describes feedstock evaluation and the effects of elemental, chemical and fractional composition. Details the equipment and components and possible impacts due to composition. Explores the process options and parameters involved in dewatering, desalting and distillation. Considers next generation processes and developments
This 2000 book provides an introduction to the nature, occurrence, physical properties, propagation and uses of surfactants in the petroleum industry. It is aimed principally at scientists and engineers who may encounter or use surfactants, whether in process design, petroleum production, or research and development. The primary focus is on applications of the principles of colloid and interface science to surfactant applications in the petroleum industry, and includes attention to practical processes and problems. Applications of surfactants in the petroleum industry are of great practical importance and are also quite diverse, since surfactants may be applied to advantage throughout the petroleum production process: in reservoirs, in oil and gas wells, in surface processing operations, and in environmental, health and safety applications. In each case appropriate knowledge and practices determine the economic and technical successes of the industrial process concerned. The book includes a comprehensive glossary, indexed and fully cross-referenced.
Is there a low-carbon future for the oil industry? Faced with compelling new geological evidence, the petroleum industry can no longer ignore the consequences of climate change brought on by consumption of its products. Yet the global community will continue to burn fossil fuels as we manage the transition to a low-carbon economy. As a geologist, oil man, academic and erstwhile politician, Bryan Lovell is uniquely well placed to describe the tensions accompanying the gradual greening of the petroleum industry over the last decade. He describes how, given the right lead from government, the oil industry could be environmental saviors, not villains, playing a crucial role in stabilizing emissions through the capture and underground storage of carbon dioxide. Challenging prejudices of both the environmentalists and the oil industry, Lovell ultimately assigns responsibility to us as consumers and our elected governments, highlighting the need for decisive leadership and urgent action to establish an international framework of policy and regulation. Bryan Lovell comments in a US News & World Report article on Exxon's potential to 'go green' - click here Video from a performance of a folk song inspired by the book, written and performed by Mike Excell at the Woodman Pub, Ware, UK. (Recording courtesy of Tony Dawes.)
Due to an increase in the wide-range of chemicals in petrochemical processing industries, as well as frequency of use, there has been a steady rise in flammability problems and other hazards. Hazardous Area Classification in Petroleum and Chemical Plants: A Guide to Mitigating Risk outlines the necessities of explosion protection in oil, gas and chemical industries, and discusses fire and occupancy hazards, extinguishing methods, hazard identification, and classification of materials. This book addresses these issues and concerns and presents a simple hazard identification system to help offset future problems. It offers information on the hazards of various materials and their level of severity as it relates to fire prevention, exposure, and control. The system provides an alerting signal and on-the-spot information to help protect lives in an industrial plant or storage location during fire emergencies. Understanding the hazard helps to ensure that the process equipment is properly selected, installed, and operated to provide a safe operating system. This text also includes a summary of the rules, methods, and requirements for fighting a fire, introduces various hazard identification systems. Includes a summary of the rules, methods, and requirements needed to extinguish a fire Introduces various hazard identification systems Includes concepts for layout and spacing of equipment in process plants The book serves as resource for plant design engineers as well as plant protection and safety personnel in planning for effective firefighting operations."
In industry, miscommunication can cause frustration, create downtime, and even trigger equipment failure. By providing a common ground for more effective discourse, the Dictionary of Oil, Gas, and Petrochemical Processing can help eliminate costly miscommunication. An essential resource for oil, gas, and petrochemical industry professionals, engineers, academic staff, and science and engineering students, the dictionary defines over 5,000 technical and commercial terms encompassing exploration, production, processing, refining, pipelining, finance, management, and safety. From basic engineering principles to the latest drilling technology, the text covers the fundamentals and their real-world applications. Alphabetically arranged for quick reference, it contains easy-to-understand descriptions and figures, as well as oil and gas SI units and metric equivalents. Industry newcomers and personnel with no technical background especially benefit from the book's practical language that clearly demonstrates the concepts behind the definitions.
This book describes technical and practical aspects of pipeline damage. It summarizes the phenomena, mechanisms and management of pipeline corrosion in-service. The topics discussed include pipelines fracture mechanics, damage mechanisms and evolution, and pipeline integrity assessment. The concept of acceptable risk is also elucidated and the future application of new knowledge management tools is considered.
The worldwide petroleum industry is facing a dilemma: the production level of heavy petroleum is higher than that of light petroleum. Heavy crude oils possess high amounts of impurities (sulfur, nitrogen, metals, and asphaltenes), as well as a high yield of residue with consequent low production of valuable distillates (gasoline and diesel). These characteristics, in turn, are responsible for the low price of heavy petroleum. Additionally, existing refineries are designed to process light crude oil, and heavy oil cannot be refined to 100 percent. One solution to this problem is the installation of plants for heavy oil upgrading before sending this raw material to a refinery. Modeling of Processes and Reactors for Upgrading of Heavy Petroleum gives an up-to-date treatment of modeling of reactors employed in the main processes for heavy petroleum upgrading. The book includes fundamental aspects such as thermodynamics, reaction kinetics, chemistry, and process variables. Process schemes for each process are discussed in detail. The author thoroughly describes the development of correlations, reactor models, and kinetic models with the aid of experimental data collected from different reaction scales. The validation of modeling results is performed by comparison with experimental and commercial data taken from the literature or generated in various laboratory scale reactors. Organized into three sections, this book deals with general aspects of properties and upgrading of heavy oils, describes the modeling of non-catalytic processes, as well as the modeling of catalytic processes. Each chapter provides detailed experimental data, explanations of how to determine model parameters, and comparisons with reactor model predictions for different situations, so that readers can adapt their own computer programs. The book includes rigorous treatment of the different topics as well as the step-by-step description of model formulation and application. It is not only an indispensable reference for professionals working in the development of reactor models for the petroleum industry, but also a textbook for full courses in chemical reaction engineering. The author would like to express his sincere appreciation to the Marcos Moshinsky Foundation for the financial support provided by means of a Catedra de Investigacion.
The supply of petroleum continues to dwindle at an alarming rate, yet it is the source of a range of products - from gasoline and diesel to plastic, rubber, and synthetic fiber. Critical to the future of this commodity is that we learn to use it more judiciously and efficiently. Fundamentals of Petroleum and Petrochemical Engineering provides a holistic understanding of petroleum and petrochemical products manufacturing, presented in a step-by-step sequence of the entire supply chain. Filled with crucial information relevant to a range of applications, the book covers topics such as: The essential preliminaries for the exploration and production of crude petroleum oil and gas Analysis of crude oil and its petroleum products The processing of petroleum in refineries The fundamentals of lubricating oil and grease Petrochemicals - their raw materials and end products, and manufacturing principles of industrially important products Theories and problems of unit operations and the processes involved in refineries and petrochemical plants Automatic operations in plants Start up, shutdown, maintenance, fire, and safety operations Commercial and managerial activities necessary for the ultimate success of a refining or manufacturing business Due to the advancement of technology, new petrochemicals are being invented and will continue to be relevant to the petroleum industry in the near future. Those entering the industry need a firm grasp of the basics as the field continues to open up new avenues of possibility, while at the same time being cognizant of the challenges that exist through the heightened focus on sustainable energy.
Refiners' efforts to conform to increasingly stringent laws and a preference for fuels derived from renewable sources have mandated changes in fluid cracking catalyst technology. Advances in Fluid Catalytic Cracking: Testing, Characterization, and Environmental Regulations explores recent advances and innovations in this important component of petroleum refining technology and evaluates how the industry has been changed by environmental regulations worldwide. Measurement, testing, and improvement Modern spectroscopic techniques continue to be essential to the understanding of catalyst performance and feedstock properties. The book contains a detailed review of the use of adsorption microcalorimetry to measure acidity, acid site density, and the strength of the strongest acid sites in heterogenous catalysts. It also discusses the use of 1H-NMR to characterize the properties of a FCCU feedstock. In addition, the book dedicates several chapters to pilot plant testing of catalysts and nontraditional feedstocks, maximizing and improving LCO (heating oil) production and quality, and improving FCCU operations. Complying with the EPA The EPA has identified the petroleum refining industry as a targeted enforcement area for the Clean Air Act (CAA) passed in 1970 and the CAA Amendments of 1990. The final chapters of the book examine the evolution of the EPA's attempts to encourage the refining industry to enter into voluntary consent decrees to comply with the CAA and the 1990 amendments. The book describes consent decree negotiations as well as FCC emissions (SOx, NOx, CO, PM) reduction technologies through consent decree implementations. Containing contributions from a panel of worldwide experts, the book demonstrates how the global shift toward environmentalism has engineered significant changes in the petroleum refining industry at a critical level.
The objective of this practical oil and gas piping handbook is to facilitate project management teams of oil and gas piping related construction projects to understand the key requirements of the discipline and to equip them with the necessary knowledge and protocol. It provides a comprehensive coverage on all the practical aspects of piping related material sourcing, fabrication essentials, welding related items, NDT activities, erection of pipes, pre-commissioning, commissioning, post-commissioning, project management and importance of ISO Management systems in oil and gas piping projects. This handbook assists contractors in ensuring the right understanding and application of protocols in the project. One of the key assets of this handbook is that the technical information and the format provided are practically from real time oil and gas piping projects; hence, the application of this information is expected to enhance the credibility of the contractors in the eyes of the clients and to some extent, simplify the existing operations. Another important highlight is that it holistically covers the stages from the raw material to project completion to handover and beyond. This will help the oil and gas piping contractors to train their project management staff to follow the best practices in the oil and gas industry. Furthermore, this piping handbook provides an important indication of the important project-related factors (hard factors) and organizational-related factors (soft factors) to achieve the desired project performance dimensions, such as timely completion, cost control, acceptable quality, safe execution and financial performance. Lastly, the role of ISO management systems, such as ISO 9001, ISO 14001 and OHSAS 18001 in construction projects is widely known across the industry; however, oil and gas specific ISO quality management systems, such as ISO 29001, and project specific management systems, such as ISO 21500, are not widely known in the industry, which are explained in detail in this handbook for the benefit of the oil and gas construction organizations. Features: Covering the stages from the raw material to project completion, to handover and beyond Providing practical guidelines to oil and gas piping contractors for training purposes and best practices in the oil and gas industry Emphasizing project-related factors (hard factors) and organizational-related factors (soft factors) with a view to achieve the desired project performance Highlighting the roles of ISO management systems in oil and gas projects.
Applications of Artificial Intelligence Techniques in the Petroleum Industry gives engineers a critical resource to help them understand the machine learning that will solve specific engineering challenges. The reference begins with fundamentals, covering preprocessing of data, types of intelligent models, and training and optimization algorithms. The book moves on to methodically address artificial intelligence technology and applications by the upstream sector, covering exploration, drilling, reservoir and production engineering. Final sections cover current gaps and future challenges.
Dynamic Well Testing in Petroleum Exploration and Development, Second Edition, describes the process of obtaining information about a reservoir through examining and analyzing the pressure-transient response caused by a change in production rate. The book provides the reader with modern petroleum exploration and well testing interpretation methods, including their basic theory and graph analysis. It emphasizes their applications to tested wells and reservoirs during the whole process of exploration and development under special geological and development conditions in oil and gas fields, taking reservoir research and performance analysis to a new level. This distinctive approach features extensive analysis and application of many pressure data plots acquired from well testing in China through advanced interpretation software that can be tailored to specific reservoir environments.
The petroleum industry is unique: it is an industry without which modern civilization would collapse. Despite the advances in alternative energy, petroleum's role is still central. Petroleum still drives economics, geopolitics, and sometimes war. The history of petroleum is, to some measure, the history of the modern world. This book represents a concise but complete one-volume reference on the history of the petroleum industry from pre-modern times to the present day, covering all aspects of business, technology, and geopolitics. The book also presents an analysis of the future of petroleum, and a highly useful set of statistical graphs. Anyone interested in the history, status, and outlook for petroleum will find this book a uniquely valuable first place to look. This new second edition incorporates all the revolutionary changes in the petroleum landscape since the first edition was published, including the boom in extraction of oil and gas from shale formations using techniques such as fracking and horizontal drilling. This second edition of Historical Dictionary of the Petroleum Industry contains a chronology, an introduction, appendixes, and an extensive bibliography. The dictionary section has over 500 cross-referenced entries on companies, people, events, technologies, countries, provinces, cities, and regions related to the history of the world's petroleum industry. This book is an excellent resource for students, researchers, and anyone wanting to know more about the petroleum industry.
Isotopes provide important information on many geological processes, with key relevance to the mining and petroleum industries, yet the techniques to obtain, process and interpret the data can be complex to master. This accessible book provides broad coverage of radiogenic isotopes in geochronology and geochemistry, explaining the basic principles and state-of-the-art techniques used to study them, with an emphasis on industry applications. The major isotopic systems are fully summarised with relation to real-world applications, enabling readers to decide which technique is most relevant for the problem they want to solve, and then to rigorously evaluate existing data, or recalculate and reassess datasets to avoid duplication of effort. A comprehensive glossary clarifies the numerous acronyms used in the field. Written at a level appropriate for advanced undergraduate students, the book also includes detail which allows more experienced practitioners to maximise the potential value of isotopic datasets.
Air and Gas Drilling Manual, Fourth Edition: Applications for Oil, Gas and Geothermal Fluid Recovery Wells, and Specialized Construction Boreholes, and the History and Advent of the Directional DTH delivers the fundamentals and current methods needed for engineers and managers engaged in drilling operations. Packed with updates, this reference discusses the engineering modelling and planning aspects of underbalanced drilling, the impacts of technological advances in high angle and horizontal drilling, and the importance of new production from shale. in addition, an in-depth discussion is included on well control model planning considerations for completions, along with detailed calculation examples using Mathcad. This book will update the petroleum and drilling engineer with a much-needed reference to stay on top of drilling methods and new applications in today's operations.
This book deals with complex fluid characterization of oil and gas reservoirs, emphasizing the importance of PVT parameters for practical application in reservoir simulation and management. It covers modeling of PVT parameters, QA/QC of PVT data from lab studies, EOS modeling, PVT simulation and compositional grading and variation. It describes generation of data for reservoir engineering calculations in view of limited and unreliable data and techniques like downhole fluid analysis and photophysics of reservoir fluids. It discusses behavior of unconventional reservoirs, particularly for difficult resources like shale gas, shale oil, coalbed methane, reservoirs, heavy and extra heavy oils.
Regional Geology and Tectonics: Principles of Geologic Analysis, 2nd edition is the first in a three-volume series covering Phanerozoic regional geology and tectonics. The new edition provides updates to the first edition's detailed overview of geologic processes, and includes new sections on plate tectonics, petroleum systems, and new methods of geological analysis. This book provides both professionals and students with the basic principles necessary to grasp the conceptual approaches to hydrocarbon exploration in a wide variety of geological settings globally.
Good engineers never stop looking for opportunities to improve the performance of their production systems. Performance enhancement methods are always carefully examined, and production data is analyzed in order to identify determining factors affecting performance. The two main activities of the production engineer in the petroleum and related industries are reservoir stimulation and artificial lift. The classic solution to maximizing a well's productivity is to stimulate it. The basis for selecting stimulation candidates should be a review of the well's actual and theoretical IPR. Low permeability wells often need fracturing on initial completion. In low permeability zones, additional post stimulation production can be significant to the economics, however, the production engineer needs to make management aware of the true long term potential or else overly optimistic projections can easily be made. The main purpose of stimulation is to enhance the property value by the faster delivery of the petroleum fluid and/or to increase ultimate economic recovery. The aim of reservoir stimulation is to bypass near-wellbore damage and return a well to its "natural" productivity / injectivity, to extend a conductive path deep into a formation and thus increase productivity beyond the natural level and to produce hydrocarbon from tight formation. The importance of reservoir stimulation is increasing due to following reasons: * Hydrocarbon fields in their mid-life * Production in these fields are in declining trend * The thrust area: Enhancement of production Hence, to improve productivity of the well matrix stimulation and hydraulic fracturing are intended to remedy, or even improve, the natural connection of the wellbore with the reservoir, which could delay the need for artificial lift. This book presents procedures taken in the Oil & Gas Industry for identifying well problems, and it suggests means of solving problems with the help of the Coil Tube unit which is used for improving well productivity and techniques like Acidizing and Hydraulic Fracturing. |
You may like...
Nitrides and Related Wide Band Gap…
A. Hangleiter, J. y. Duboz, …
Hardcover
R4,240
Discovery Miles 42 400
Ion Implantation into Semiconductors…
B.G. Svensson, H. A Atwater, …
Hardcover
R4,422
Discovery Miles 44 220
Nanoscale Compound Semiconductors and…
Vijay B Pawade, Sanjay J. Dhoble, …
Paperback
R4,703
Discovery Miles 47 030
Nanotechnology-Based E-Noses…
Ram K. Gupta, Tuan Anh Nguyen, …
Paperback
R6,056
Discovery Miles 60 560
Wearable Bioelectronics
Anthony P. F. Turner, Alberto Salleo, …
Paperback
R3,930
Discovery Miles 39 300
Plasmonic Materials and Metastructures…
Shangjr Gwo, Andrea Alù, …
Paperback
R4,940
Discovery Miles 49 400
Epitaxial Growth of Complex Metal Oxides
Gertjan Koster, Mark Huijben, …
Paperback
R6,167
Discovery Miles 61 670
Quantum Transport in Mesoscopic Systems…
Pier A. Mello, Narendra Kumar
Hardcover
R4,489
Discovery Miles 44 890
|