![]() |
![]() |
Your cart is empty |
||
Books > Academic & Education > Professional & Technical > Physics
For the engineering and scientific professional, A Physicist's
Guide to Mathematica, 2/e provides an updated reference guide based
on the 2007 new 6.0 release, providing an organized and integrated
desk reference with step by step instructions for the most often
used features of the software as it applies to research in physics.
"Semiconductors and Semimetals" has distinguished itself through
the careful selection of well-known authors, editors, and
contributors. Originally widely known as the "Willardson and Beer"
Series, it has succeeded in publishing numerous landmark volumes
and chapters. The series publishes timely, highly relevant volumes
intended for long-term impact and reflecting the truly
interdisciplinary nature of the field. The volumes in
"Semiconductors and Semimetals" have been and will continue to be
of great interest to physicists, chemists, materials scientists,
and device engineers in academia, scientific laboratories and
modern industry.
Since its inception in 1966, the series of numbered volumes known
as "Semiconductors and Semimetals" has distinguished itself through
the careful selection of well-known authors, editors, and
contributors. The "Willardson and Beer" Series, as it is widely
known, has succeeded in publishing numerous landmark volumes and
chapters. Not only did many of these volumes make an impact at the
time of their publication, but they continue to be well-cited years
after their original release. Recently, Professor Eicke R. Weber of
the University of California at Berkeley joined as a co-editor of
the series. Professor Weber, a well-known expert in the field of
semiconductor materials, will further contribute to continuing the
series' tradition of publishing timely, highly relevant, and
long-impacting volumes. Some of the recent volumes, such as
"Hydrogen in Semiconductors, Imperfections in III/V Materials,
Epitaxial Microstructures, High-Speed Heterostructure Devices,
Oxygen in Silicon, " and others promise that this tradition will be
maintained and even expanded. Reflecting the truly
interdisciplinary nature of the field that the series covers, the
volumes in "Semiconductors and Semimetals" have been and will
continue to be of great interest to physicists, chemists, materials
scientists, and device engineers in modern industry.
"Advances in Imaging and Electron Physics "merges two long-running serials--"Advances in Electronics and Electron Physics" and "Advances in Optical and Electron Microscopy." This series features extended articles on the physics of
electron devices (especially semiconductor devices), particle
optics at high and low energies, microlithography, image science
and digital image processing, electromagnetic wave propagation,
electron microscopy, and the computing methods used in all these
domains.
Semiconductors and Semimetals has distinguished itself through
the careful selection of well-known authors, editors, and
contributors. Originally widely known as the "Willardson and Beer"
Series, it has succeeded in publishing numerous landmark volumes
and chapters. The series publishes timely, highly relevant volumes
intended for long-term impact and reflecting the truly
interdisciplinary nature of the field. The volumes in
Semiconductors and Semimetals have been and will continue to be of
great interest to physicists, chemists, materials scientists, and
device engineers in academia, scientific laboratories and modern
industry.
In the 50 years since the first volume of "Progress in Optics" was
published, optics has become one of the most dynamic fields of
science. The volumes in this series that have appeared up to now
contain more than 300 review articles by distinguished research
workers, which have become permanent records for many important
developments.
This volume continues the tradition of the "Advances" series. It
contains contributions from experts in the field of atomic,
molecular, and optical (AMO) physics. The articles contain some
review material, but are intended to provide a comprehensive
picture of recent important developments in AMO physics. Both
theoretical and experimental articles are included in the volume.
This volume continues the tradition of the "Advances" series. It
contains contributions from experts in the field of atomic,
molecular, and optical (AMO) physics. The articles contain some
review material, but are intended to provide a comprehensive
picture of recent important developments in AMO physics. Both
theoretical and experimental articles are included in the volume.
In the50years since the first volume of "Progress in Optics" was
published, optics has become one of the most dynamic fields of
science. The volumes in this series that have appeared up to now
contain more than 300 review articles by distinguished research
workers, which have become permanent records for many important
developments, helping optical scientists and optical engineers stay
abreast of their fields.
"Advances in Imaging and Electron Physics " merges two long-running
serials--"Advances in Electronics and Electron Physics" and
"Advances in Optical and Electron Microscopy."
This volume continues the tradition of the Advances series. It
contains contributions from experts in the field of atomic,
molecular, and optical (AMO) physics. The articles contain some
review material, but are intended to provide a comprehensive
picture of recent important developments in AMO physics. Both
theoretical and experimental articles are included in the volume.
In the forty-eight years that have gone by since the first volume
of Progress in Optics was published, optics has become one of the
most dynamic fields of science. The volumes in this series which
have appeared up to now contain more than 300 review articles by
distinguished research workers, which have become permanent records
for many important developments.
In the fourty-seven years that have gone by since the first volume
of Progress in Optics was published, optics has become one of the
most dynamic fields of science. The volumes in this series which
have appeared up to now contain more than 300 review articles by
distinguished research workers, which have become permanent records
for many important developments.
Gas phase molecular spectroscopy is a powerful tool for obtaining
information on the geometry and internal structure of isolated
molecules as well as on the interactions that they undergo. It
enables the study of fundamental parameters and processes and is
also used for the sounding of gas media through optical techniques.
It has been facing always renewed challenges, due to the
considerable improvement of experimental techniques and the
increasing demand for accuracy and scope of remote sensing
applications.
The sixteen papers collected in this volume are expanded and
revised versions of talks delivered at the Second International
Conference on the Ontology of Spacetime, organized by the
International Society for the Advanced Study of Spacetime (John
Earman, President) at Concordia University (Montreal) from 9 to 11
June 2006.
In the fourty-six years that have gone by since the first volume of
Progress in Optics was published, optics has become one of the most
dynamic fields of science. The volumes in this series which have
appeared up to now contain more than 300 review articles by
distinguished research workers, which have become permanent records
for many important developments.
Ray, wave and quantum concepts are central to diverse and seemingly
incompatible models of light. Each model particularizes a specific
''manifestation'' of light, and then corresponds to adequate
physical assumptions and formal approximations, whose domains of
applicability are well-established. Accordingly each model
comprises its own set of geometric and dynamic postulates with the
pertinent mathematical means.
In this book Rickles considers several interpretative difficulties
raised by gauge-type symmetries (those that correspond to no change
in physical state). The ubiquity of such symmetries in modern
physics renders them an urgent topic in philosophy of physics.
Rickles focuses on spacetime physics, and in particular classical
and quantum general relativity. Here the problems posed are at
their most pathological, involving the apparent disappearance of
spacetime Rickles argues that both traditional ontological
positions should be replaced by a structuralist account according
to which relational structure is what the physics is about.
Conducting polymers were discovered in 1970s in Japan. Since this discovery, there has been a steady flow of new ideas, new understanding, new conducing polymer (organics) structures and devices with enhanced performance. Several breakthroughs have been made in the design and fabrication technology of the organic devices. Almost all properties, mechanical, electrical, and optical, are important in organics. This book describes the recent advances in these organic materials and devices.
Quantum Mechanics of Non-Hamiltonian and Dissipative Systems is
self-contained and can be used by students without a previous
course in modern mathematics and physics. The book describes the
modern structure of the theory, and covers the fundamental results
of last 15 years. The book has been recommended by Russian Ministry
of Education as the textbook for graduate students and has been
used for graduate student lectures from 1998 to 2006.
Bacon and Osetsky present an atomistic model of
dislocation-particle interactions in metal systems, including
irradiated materials. This work is important in simulating actual
behavior, removing earlier reliance on assumed mechanisms for
dislocation motion. New mechanisms for dislocation generation under
shock loading are presented by Meyers et al. These models provide a
basis for understanding the constitutive behavior of shocked
material. Saada and Dirras provide a new perspective on the
Hall-Petch relation, with particular emphasis on nanocrystals. Of
particular significance, deviations from the traditional stress
proportional to the square-root of grain size relation are
explained. Robertson et al consider a number of effects of hydrogen
on plastic flow and provide a model that provides an explanation of
the broad range of properties. .
Volume 54 of the Advances Series contains ten contributions,
covering a diversity of subject areas in atomic, molecular and
optical physics. The article by Regal and Jin reviews the
properties of a Fermi degenerate gas of cold potassium atoms in the
crossover regime between the Bose-Einstein condensation of
molecules and the condensation of fermionic atom pairs. The
transition between the two regions can be probed by varying an
external magnetic field. Sherson, Julsgaard and Polzik explore the
manner in which light and atoms can be entangled, with applications
to quantum information processing and communication. They report on
the result of recent experiments involving the entanglement of
distant objects and quantum memory of light. Recent developments in
cold Rydberg atom physics are reviewed in the article by Choi,
Kaufmann, Cubel-Liebisch, Reinhard, and Raithel. Fascinating
experiments are described in which cold, highly excited atoms
(???Rydberg??? atoms) and cold plasmas are generated. Evidence for
a collective excitation of Rydberg matter is also presented.
Griffiin and Pindzola offer an account of non-perturbative quantal
methods for electron-atom scattering processes. Included in the
discussion are the R-matrix with pseudo-states method and the
time-dependent close-coupling method. An extensive review of the
R-matrix theory of atomic, molecular, and optical processes is
given by Burke, Noble, and Burke. They present a systematic
development of the R-matrix method and its applications to various
processes such as electron-atom scattering, atomic photoionization,
electron-molecule scattering, positron-atom scattering, and
atomic/molecular multiphoton processes. Electron impactexcitation
of rare-gas atoms from both their ground and metastable states is
discussed in the article by Boffard, Jung, Anderson, and Lin.
Excitation cross sections measured by the optical method are
reviewed with emphasis on the physical interpretation in terms of
electronic structure of the target atoms. Ozier and Moazzen-Ahmadi
explore internal rotation of symmetric top molecules. Developments
of new experimental methods based on high-resolution torsional,
vibrational, and molecular beam spectroscopy allow accurate
determination of internal barriers for these symmetric molecules.
The subject of attosecond and angstrom science is reviewed by
Niikura and Corkum. The underlying physical mechanisms allowing one
to generate attosecond radiation pulses are described and the
technology needed for the preparation of such pulses is discussed.
LeGou??t, Bretenaker, and Lorger?? describe how rare earth ions
embedded in crystals can be used for processing optically carried
broadband radio-frequency signals. Methods for reaching tens of
gigahertz instantaneous bandwidth with submegahertz resolution
using such devices are analyzed in detail and demonstrated
experimentally. Finally, in the article by Illing, Gauthier, and
Roy, it is shown that small perturbations applied to optical
systems can be used to suppress or control optical chaos,
spatio-temporal dynamics, and patterns. Applications of these
techniques to communications, laser stabilization, and improving
the sensitivity of low-light optical switches are explored.
This book is a result of many years of author's research and
teaching on random vibration and control. It was used as lecture
notes for a graduate course. It provides a systematic review of
theory of probability, stochastic processes, and stochastic
calculus. The feedback control is also reviewed in the book. Random
vibration analyses of SDOF, MDOF and continuous structural systems
are presented in a pedagogical order. The application of the random
vibration theory to reliability and fatigue analysis is also
discussed. Recent research results on fatigue analysis of
non-Gaussian stress processes are also presented. Classical
feedback control, active damping, covariance control, optimal
control, sliding control of stochastic systems, feedback control of
stochastic time-delayed systems, and probability density tracking
control are studied. Many control results are new in the literature
and included in this book for the first time. The book serves as a
reference to the engineers who design and maintain structures
subject to harsh random excitations including earthquakes, sea
waves, wind gusts, and aerodynamic forces, and would like to reduce
the damages of structural systems due to random excitations.
This book contains selected papers from the First International
Conference on the Ontology of Spacetime. Its fourteen chapters
address two main questions: first, what is the current status of
the substantivalism/relationalism debate, and second, what about
the prospects of presentism and becoming within present-day physics
and its philosophy? The overall tenor of the four chapters of the
book's first part is that the prospects of spacetime
substantivalism are bleak, although different possible positions
remain with respect to the ontological status of spacetime. Part II
and Part III of the book are devoted to presentism, eternalism, and
becoming, from two different perspectives. In the six chapters of
Part II it is argued, in different ways, that relativity theory
does not have essential consequences for these issues. It certainly
is true that the structure of time is different, according to
relativity theory, from the one in classical theory. But that does
not mean that a decision is forced between presentism and
eternalism, or that becoming has proved to be an impossible
concept. It may even be asked whether presentism and eternalism
really offer different ontological perspectives at all. The writers
of the last four chapters, in Part III, disagree. They argue that
relativity theory is incompatible with becoming and presentism.
Several of them come up with proposals to go beyond relativity, in
order to restore the prospects of presentism.
Advances in Imaging and Electron Physics/B> merges two long-running serials-Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. |
![]() ![]() You may like...
Scientific Computing and Algorithms in…
Michael Griebel, Anton Schuller, …
Hardcover
R4,396
Discovery Miles 43 960
Stress Concentration at Notches
Mykhaylo P. Savruk, Andrzej Kazberuk
Hardcover
Approximation Algorithms for Complex…
Emmanuil H Georgoulis, Armin Iske, …
Hardcover
R4,384
Discovery Miles 43 840
Time-dependent Problems in Imaging and…
Barbara Kaltenbacher, Thomas Schuster, …
Hardcover
R4,265
Discovery Miles 42 650
Mathematics and Computing - ICMC 2018…
Debdas Ghosh, Debasis Giri, …
Hardcover
R2,960
Discovery Miles 29 600
BEM-based Finite Element Approaches on…
Steffen Weisser
Hardcover
Computational and Experimental Mechanics…
Vadim V. Silberschmidt
Hardcover
R2,896
Discovery Miles 28 960
Computational Biomechanics for Medicine…
Adam Wittek, Grand Joldes, …
Hardcover
R6,280
Discovery Miles 62 800
|