![]() |
![]() |
Your cart is empty |
||
Books > Academic & Education > Professional & Technical > Physics
This volume continues the tradition of the Advances series. It
contains contributions from experts in the field of atomic,
molecular, and optical (AMO) physics. The articles contain some
review material, but are intended to provide a comprehensive
picture of recent important developments in AMO physics. Both
theoretical and experimental articles are included in the volume.
In the50years since the first volume of "Progress in Optics" was
published, optics has become one of the most dynamic fields of
science. The volumes in this series that have appeared up to now
contain more than 300 review articles by distinguished research
workers, which have become permanent records for many important
developments, helping optical scientists and optical engineers stay
abreast of their fields.
Ray, wave and quantum concepts are central to diverse and seemingly
incompatible models of light. Each model particularizes a specific
''manifestation'' of light, and then corresponds to adequate
physical assumptions and formal approximations, whose domains of
applicability are well-established. Accordingly each model
comprises its own set of geometric and dynamic postulates with the
pertinent mathematical means.
Quantum Mechanics of Non-Hamiltonian and Dissipative Systems is
self-contained and can be used by students without a previous
course in modern mathematics and physics. The book describes the
modern structure of the theory, and covers the fundamental results
of last 15 years. The book has been recommended by Russian Ministry
of Education as the textbook for graduate students and has been
used for graduate student lectures from 1998 to 2006.
Bacon and Osetsky present an atomistic model of
dislocation-particle interactions in metal systems, including
irradiated materials. This work is important in simulating actual
behavior, removing earlier reliance on assumed mechanisms for
dislocation motion. New mechanisms for dislocation generation under
shock loading are presented by Meyers et al. These models provide a
basis for understanding the constitutive behavior of shocked
material. Saada and Dirras provide a new perspective on the
Hall-Petch relation, with particular emphasis on nanocrystals. Of
particular significance, deviations from the traditional stress
proportional to the square-root of grain size relation are
explained. Robertson et al consider a number of effects of hydrogen
on plastic flow and provide a model that provides an explanation of
the broad range of properties. .
Conducting polymers were discovered in 1970s in Japan. Since this discovery, there has been a steady flow of new ideas, new understanding, new conducing polymer (organics) structures and devices with enhanced performance. Several breakthroughs have been made in the design and fabrication technology of the organic devices. Almost all properties, mechanical, electrical, and optical, are important in organics. This book describes the recent advances in these organic materials and devices.
This book is devoted to an important branch of the dynamical systems theory: the study of the fine (fractal) structure of Poincare recurrences -instants of time when the system almost repeats its initial state. The authors were able to write an entirely self-contained text including many insights and examples, as well as providing complete details of proofs. The only prerequisites are a basic knowledge of analysis and topology. Thus this book can serve as a graduate text or self-study guide for courses in applied mathematics or nonlinear dynamics (in the natural sciences). Moreover, the book can be used by specialists in applied nonlinear dynamics following the way in the book. The authors applied the mathematical theory developed in the book to two important problems: distribution of Poincare recurrences for nonpurely chaotic Hamiltonian systems and indication of synchronization regimes in coupled chaotic individual systems.
"Semiconductors and Semimetals" has distinguished itself through
the careful selection of well-known authors, editors, and
contributors. Originally widely known as the "Willardson and Beer"
Series, it has succeeded in publishing numerous landmark volumes
and chapters. The series publishes timely, highly relevant volumes
intended for long-term impact and reflecting the truly
interdisciplinary nature of the field. The volumes in
"Semiconductors and Semimetals" have been and will continue to be
of great interest to physicists, chemists, materials scientists,
and device engineers in academia, scientific laboratories and
modern industry.
Advances in Imaging and Electron Physics merges two long-running serials-Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.
Advances in Imaging and Electron Physics/B> merges two long-running serials-Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.
The sixteen papers collected in this volume are expanded and
revised versions of talks delivered at the Second International
Conference on the Ontology of Spacetime, organized by the
International Society for the Advanced Study of Spacetime (John
Earman, President) at Concordia University (Montreal) from 9 to 11
June 2006.
Optically Stimulated Luminescence (OSL) has become the technique of choice for many areas of radiation dosimetry. The technique is finding widespread application in a variety of radiation dosimetry fields, including personal monitoring, environmental monitoring, retrospective dosimetry (including geological dating and accident dosimetry), space dosimetry, and many more. In this book we have attempted to synthesize the major advances in the field, covering both fundamental understanding and the many applications. The latter serve to demonstrate the success and popularity of OSL as a dosimetry method.
"Advances in Imaging and Electron Physics " merges two long-running
serials--"Advances in Electronics and Electron Physics" and
"Advances in Optical and Electron Microscopy."
The scientific program of these important proceedings was arranged
to cover most of the field of neutrino physics. In light of the
rapid growth of interest stimulated by new interesting results from
the field, more than half of the papers presented here are related
to the neutrino mass and oscillations, including atmospheric and
solar neutrino studies. Neutrino mass and oscillations could imply
the existence of a mass scale many orders of magnitudes higher than
presented in current physics and will probably guide scientists
beyond the standard model of particle physics.
Since its inception in 1966, the series of numbered volumes known
as "Semiconductors and Semimetals" has distinguished itself through
the careful selection of well-known authors, editors, and
contributors. The "Willardson and Beer" Series, as it is widely
known, has succeeded in publishing numerous landmark volumes and
chapters. Not only did many of these volumes make an impact at the
time of their publication, but they continue to be well-cited years
after their original release. Recently, Professor Eicke R. Weber of
the University of California at Berkeley joined as a co-editor of
the series. Professor Weber, a well-known expert in the field of
semiconductor materials, will further contribute to continuing the
series' tradition of publishing timely, highly relevant, and
long-impacting volumes. Some of the recent volumes, such as
"Hydrogen in Semiconductors, Imperfections in III/V Materials,
Epitaxial Microstructures, High-Speed Heterostructure Devices,
Oxygen in Silicon, " and others promise that this tradition will be
maintained and even expanded. Reflecting the truly
interdisciplinary nature of the field that the series covers, the
volumes in "Semiconductors and Semimetals" have been and will
continue to be of great interest to physicists, chemists, materials
scientists, and device engineers in modern industry.
Intelligent systems are required to enhance the capacities being made available to us by the internet and other computer based technologies. The theory necessary to help providing solutions to difficult problems in the construction of intelligent systems are discussed. In particular, attention is paid to situations in which the available information and data may be imprecise, uncertain, incomplete or of a linguistic nature. Various methodologies to manage such information are discussed. Among these are the probabilistic, possibilistic, fuzzy, logical, evidential and network-based frameworks.
"
This is a practical textbook written for use by engineers,
scientists and technicians. It is not intended to be a rigorous
scientific treatment of the subject material, as this would fill
several volumes. Rather, it introduces the reader to the
fundamentals of the subject material, and provides sufficient
references for an in-depth study of the subject by the interested
technologist. The author has a lifetime teaching credential in the
California Community College System. Also, he has taught technical
courses with the American Vacuum Society for about 35 years.
Students attending many of these classes have backgrounds varying
from high-school graduates to Ph.D.s in technical disciplines. This
is an extremely difficult class profile to teach. This book still
endeavors to reach this same audience. Basic algebra is required to
master most of the material. But, the calculus is used in
derivation of some of the equations. The author risks use of the
first person "I," instead of "the author," and "you" instead of
"the reader." Both are thought to be in poor taste when writing for
publication in the scientific community. However, "I" am writing
this book for "you" because the subject is exciting, and I enjoy
teaching you, perhaps, something new. The book is written more in
the vein of a "one-on-one" discussion with you, rather than the
author lecturing to the reader. There are anecdotes, and examples
of some failures and successes I have had over the last forty-five
years in vacuum related activities, I'll try not to understate
either.
New models for dislocation structure and motion are presented for
nanocrystals, nucleation at grain boundaries, shocked crystals,
interphase interfaces, quasicrystals, complex structures with
non-planar dislocation cores, and colloidal crystals. A review of
experimentally established main features of the magnetoplastic
effect with their physical interpretation explains many diverse
results of this type. The model has many potential applications for
forming processes influenced by magnetic fields.
This book contains selected papers from the First International
Conference on the Ontology of Spacetime. Its fourteen chapters
address two main questions: first, what is the current status of
the substantivalism/relationalism debate, and second, what about
the prospects of presentism and becoming within present-day physics
and its philosophy? The overall tenor of the four chapters of the
book's first part is that the prospects of spacetime
substantivalism are bleak, although different possible positions
remain with respect to the ontological status of spacetime. Part II
and Part III of the book are devoted to presentism, eternalism, and
becoming, from two different perspectives. In the six chapters of
Part II it is argued, in different ways, that relativity theory
does not have essential consequences for these issues. It certainly
is true that the structure of time is different, according to
relativity theory, from the one in classical theory. But that does
not mean that a decision is forced between presentism and
eternalism, or that becoming has proved to be an impossible
concept. It may even be asked whether presentism and eternalism
really offer different ontological perspectives at all. The writers
of the last four chapters, in Part III, disagree. They argue that
relativity theory is incompatible with becoming and presentism.
Several of them come up with proposals to go beyond relativity, in
order to restore the prospects of presentism.
In the forty-eight years that have gone by since the first volume
of Progress in Optics was published, optics has become one of the
most dynamic fields of science. The volumes in this series which
have appeared up to now contain more than 300 review articles by
distinguished research workers, which have become permanent records
for many important developments.
This book discussed fundamental problems in dynamics, which
extensively exist in engineering, natural and social sciences. The
book presented a basic theory for the interactions among many
dynamical systems and for a system whose motions are constrained
naturally or artificially. The methodology and techniques presented
in this book are applicable to discontinuous dynamical systems in
physics, engineering and control. In addition, they may provide
useful tools to solve non-traditional dynamics in biology, stock
market and internet network et al, which cannot be easily solved by
the traditional Newton mechanics. The new ideas and concepts will
stimulate ones' thought and creativities in corresponding subjects.
The author also used the simple, mathematical language to write
this book. Therefore, this book is very readable, which can be
either a textbook for senior undergraduate and graduate students or
a reference book for researches in dynamics.
Optics has become one of the most dynamic fields of science since the first volume of Progress in Optics was published, forty years ago. At the time of inception of this series, the first lasers were only just becoming operational, holography was in its infancy, subjects such as fiber optics, integrated optics and optoelectronics did not exist and quantum optics was the domain of only a few physicists. The term photonics had not yet been coined. Today these fields are flourishing and have become areas of specialisation for many science and engineering students and numerous research workers and engineers throughout the world. Some of the advances in these fields have been recognized by awarding Nobel prizes to seven physicists in the last twenty years. The volumes in this series which have appeared up to now contain 240 review articles by distinguished research workers, which have become permanent records for many important developments. They have helped optical scientists and optical engineers to stay abreast of their fields. There is no sign that developments in optics are slowing down or becoming less interesting. We confidently expect that, just like their predecessors, future volumes of Progress in Optics will faithfully record the most important advances that are being made in optics and related fields.
Hardbound. It is a pleasure to record that Progress in Optics is commencing the fifth decade of its existence. The first volume was published in 1961, only a few months after the invention of the laser. This event triggered a wealth of new and exciting developments, many of which were reported in the 240 review articles which were published in this series since its inception. The present volume contains seven articles covering a wide range of subjects. The first article, by M.H. Fields, J. Popp, and R.K. Chang, presents a review of various optical effects in spherical and circular micro-cavities capable of supporting high-Q resonant modes (commonly referred to as morphology-dependent resonances (MDRs) or whispering gallery modes (WGMs)). The article treats the theory of symmetrical and deformed micro-cavities and describes recent research and development in the areas of quantum electrodynamics, lasers, optical spectroscopy, and filters for
In the fourty-seven years that have gone by since the first volume
of Progress in Optics was published, optics has become one of the
most dynamic fields of science. The volumes in this series which
have appeared up to now contain more than 300 review articles by
distinguished research workers, which have become permanent records
for many important developments.
Volume 54 of the Advances Series contains ten contributions,
covering a diversity of subject areas in atomic, molecular and
optical physics. The article by Regal and Jin reviews the
properties of a Fermi degenerate gas of cold potassium atoms in the
crossover regime between the Bose-Einstein condensation of
molecules and the condensation of fermionic atom pairs. The
transition between the two regions can be probed by varying an
external magnetic field. Sherson, Julsgaard and Polzik explore the
manner in which light and atoms can be entangled, with applications
to quantum information processing and communication. They report on
the result of recent experiments involving the entanglement of
distant objects and quantum memory of light. Recent developments in
cold Rydberg atom physics are reviewed in the article by Choi,
Kaufmann, Cubel-Liebisch, Reinhard, and Raithel. Fascinating
experiments are described in which cold, highly excited atoms
(???Rydberg??? atoms) and cold plasmas are generated. Evidence for
a collective excitation of Rydberg matter is also presented.
Griffiin and Pindzola offer an account of non-perturbative quantal
methods for electron-atom scattering processes. Included in the
discussion are the R-matrix with pseudo-states method and the
time-dependent close-coupling method. An extensive review of the
R-matrix theory of atomic, molecular, and optical processes is
given by Burke, Noble, and Burke. They present a systematic
development of the R-matrix method and its applications to various
processes such as electron-atom scattering, atomic photoionization,
electron-molecule scattering, positron-atom scattering, and
atomic/molecular multiphoton processes. Electron impactexcitation
of rare-gas atoms from both their ground and metastable states is
discussed in the article by Boffard, Jung, Anderson, and Lin.
Excitation cross sections measured by the optical method are
reviewed with emphasis on the physical interpretation in terms of
electronic structure of the target atoms. Ozier and Moazzen-Ahmadi
explore internal rotation of symmetric top molecules. Developments
of new experimental methods based on high-resolution torsional,
vibrational, and molecular beam spectroscopy allow accurate
determination of internal barriers for these symmetric molecules.
The subject of attosecond and angstrom science is reviewed by
Niikura and Corkum. The underlying physical mechanisms allowing one
to generate attosecond radiation pulses are described and the
technology needed for the preparation of such pulses is discussed.
LeGou??t, Bretenaker, and Lorger?? describe how rare earth ions
embedded in crystals can be used for processing optically carried
broadband radio-frequency signals. Methods for reaching tens of
gigahertz instantaneous bandwidth with submegahertz resolution
using such devices are analyzed in detail and demonstrated
experimentally. Finally, in the article by Illing, Gauthier, and
Roy, it is shown that small perturbations applied to optical
systems can be used to suppress or control optical chaos,
spatio-temporal dynamics, and patterns. Applications of these
techniques to communications, laser stabilization, and improving
the sensitivity of low-light optical switches are explored. |
![]() ![]() You may like...
Distributed Sensor Networks: Technology…
Marvin Heather
Hardcover
Broadband Satellite Communication…
Thierry Gayraud, Michel Mazella, …
Hardcover
R3,183
Discovery Miles 31 830
Multimedia Communications Networks…
Mallikarjun Tatipamula, Bhumip Khasnabish
Hardcover
R3,948
Discovery Miles 39 480
Telegraph Code, 1883
Kean & Co Preston, Lawrence J Gutter Collection of Chic
Hardcover
R752
Discovery Miles 7 520
Introduction To Communication Studies
George Angelopulo, Elizabeth Lubinga
Paperback
R432
Discovery Miles 4 320
The Telegrapher [microform]; v.05
National Telegraphic Union
Hardcover
R1,060
Discovery Miles 10 600
Optical Networks - Design and Modelling…
Giancarlo De Marchis, Roberto Sabella
Hardcover
R3,049
Discovery Miles 30 490
The Telegrapher [microform]; v.11
National Telegraphic Union
Hardcover
R1,060
Discovery Miles 10 600
|