![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Academic & Education > Professional & Technical > Physics
"Fusion: The Energy of the Universe, 2e"is an essential
reference providing basic principles of fusion energy from its
history to the issues and realities progressing from the present
day energy crisis. The book provides detailed developments and
applications for researchers entering the field of fusion energy
research. This second edition includes the latest results from the
National Ignition Facility at the Lawrence Radiation Laboratory at
Livermore, CA, and the progress on the International Thermonuclear
Experimental Reactor (ITER) tokamak programme at Caderache,
France.
Introduction to Relativity is intended to teach physics and
astronomy majors at the freshman, sophomore or upper-division
levels how to think about special and general relativity in a
fundamental, but accessible, way. Designed to render any reader a
"master of relativity," everything on the subject is comprehensible
and derivable from first principles. The book emphasizes problem
solving, contains abundant problem sets, and is conveniently
organized to meet the needs of both student and instructor.
Solid state physics is the branch of physics primarily devoted to the study of matter in its solid phase, especially at the atomic level. This prestigious serial presents timely and state-of-the-art reviews pertaining to all aspects of solid state physics.
"Advances in Imaging and Electron Physics "merges two long-running
serials--"Advances in Electronics and Electron Physics" and
"Advances in Optical and Electron Microscopy."
"Physics of Condensed Matter" is designed for a two-semester graduate course on condensed matter physics for students in physics and materials science. While the book offers fundamental ideas and topic areas of condensed matter physics, it also includes many recent topics of interest on which graduate students may choose to do further research. The text can also be used as a one-semester course for advanced undergraduate majors in physics, materials science, solid state chemistry, and electrical engineering, because it offers a breadth of topics applicable to these majors. The book begins with a clear, coherent picture of simple models
of solids and properties and progresses to more advanced properties
and topics later in the book. It offers a comprehensive account of
the modern topics in condensed matter physics by including
introductory accounts of the areas of research in which intense
research is underway. The book assumes a working knowledge of
quantum mechanics, statistical mechanics, electricity and magnetism
and Green's function formalism (for the second-semester
curriculum).
This work presents one of the most powerful methods of plasma
diagnosis in exquisite detail, to guide researchers in the theory
and measurement techniques of light scattering in plasmas. Light
scattering in plasmas is essential in the research and development
of fusion energy, environmental solutions, and electronics.
"Introductory Statistical Thermodynamics" is a text for an introductory one-semester course in statistical thermodynamics for upper-level undergraduate and graduate students in physics and engineering. The book offers a high level of detail in derivations of all equations and results. This information is necessary for students to grasp difficult concepts in physics that are needed to move on to higher level courses. The text is elementary, self contained, and mathematically well-founded, containing a number of problems with detailed solutions to help students to grasp the more difficult theoretical concepts. Beginning chapters place an emphasis on quantum mechanics
This book presents an approach to the design and fabrication of
optical elements that are based on the use of one- or
two-dimensional randomly rough surfaces to reflect or transmit
light in specified ways. The reader is provided with an
introduction to analytical methods for the solution of direct
problems in rough surface scattering, and fabrication techniques.
These can be useful in contexts outside the scope of this book. The
advantages and disadvantages of this stochastic approach compared
to the diffractive optics approach are discussed. Finally,
experimental results that verify the predictions of the theories
developed in this book are presented.
New materials addressed for the first time include the chapters
on minerals by Barber et al and the chapter on dislocations in
colloidal crystals by Schall and Spaepen. Moriarty et al extend the
first principles calculations of kink configurations in bcc metals
to high pressures, including the use of flexible boundary
conditions to model dilatational effects. Rabier et al clarify the
issue of glide-shuffle slip systems in diamond cubic and related
III-V compounds. Metadislocations, discussed by Feuerbacher and
Heggen, represent a new type of defect in multicomponent metal
compounds and alloys. Dislocation core structures identified in silicon at high stress Metadislocations, a new type of defect, identified and described Extension of dislocation concepts to complex minerals First observations of dislocations in colloidal crystals
"Advances in Imaging and Electron Physics" merges two long-running
serials--"Advances in Electronics and Electron Physics" and
"Advances in Optical and Electron Microscopy." This series features
extended articles on the physics of electron devices (especially
semiconductor devices), particle optics at high and low energies,
microlithography, image science and digital image processing,
electromagnetic wave propagation, electron microscopy, and the
computing methods used in all these domains.
Seismic waves generated by earthquakes have been interpreted to
provide us information about the Earth s structure across a variety
of scales. For short periods of less than 1 second, the envelope of
seismograms changes significantly with increased travel distance
and coda waves are excited by scattering due to randomly
distributed heterogeneities in the Earth. Deterministic structures
such as horizontally uniform velocity layer models in traditional
seismology cannot explain these phenomena. This book focuses on the
Earth heterogeneity and scattering effects on seismic waves. Topics
covered are recent developments in wave theory and observation
including: coda wave analysis for mapping medium heterogeneity and
monitoring temporal variation of physical properties, radiation of
short-period seismic waves from an earthquake fault, weak
localization of seismic waves, attenuation of seismic waves in
randomly porous media, synthesis of seismic wave envelopes in short
periods, and laboratory investigations of ultrasonic wave
propagation in rock samples.
In the first years after the discovery of radioactivity it became clear that nuclear physics was, by excellence, the science of small quantum systems. Between the fifties and the eighties nuclear physics and elementary particles physics lived their own lives, without much interaction. During this period the basic concepts were defined. Recently, contrary to the specialization law often observed in science, the overlap between nuclear and elementary particle physics has become somewhat blurred.
This book presents an overview of the physics of radiation
detection and its applications. It covers the origins and
properties of different kinds of ionizing radiation, their
detection and measurement, and the procedures used to protect
people and the environment from their potentially harmful effects.
It details the experimental techniques and instrumentation used in
different detection systems in a very practical way without
sacrificing the physics content. It provides useful formulae and
explains methodologies to solve problems related to radiation
measurements. With abundance of worked-out examples and
end-of-chapter problems, this book enables the reader to understand
the underlying physical principles and their applications. Detailed
discussions on different detection media, such as gases, liquids,
liquefied gases, semiconductors, and scintillators make this book
an excellent source of information for students as well as
professionals working in related fields. Chapters on statistics,
data analysis techniques, software for data analysis, and data
acquisition systems provide the reader with necessary skills to
design and build practical systems and perform data analysis.
This volume contains five articles presenting reviews of several topics of current research which are likely to be of interest to optical scientists and optical engineers. The first article, by J. Ohtsubo, deals with the dynamics of feedback-induced instability and chaos. The characteristics of semiconductor lasers based on the rate equations, including various laser structures, are reviewed and the effects of optical feedback in semiconductor lasers are then discussed. the general area of the nonlinear interaction of ultrafast pulses with optical and photonic crystal fibres are discussed. In particular, ultrafast pulse measurements, pulse shaping and pulse control are discussed. transient optical phenomena that take place in the spatial-temporal dynamics of ultrashort pulses. The interplay of diffractive and dispersive phenomena is examined. They include coupled processes of amplitude and phase reshaping, spectral variations and polarity reversal for different types of light pulses. Reflection and refraction effects that take place at the interface between media with time-dependent dielectric susceptibilities are also discussed. principles of optical coherence tomography (OCT). This is a relatively new discipline with important potential applications in macropscopic, microscopic and endoscopic imaging. The article begins with a brief summary of the field and then describes various OCT interferometer configurations and discusses basic sample signal extraction techiques. The article also covers subjects such as contrast generation techniques, resolution, signal processing techiques for image display, image enhancement, speckle suppression and OCT detection sensitivity. A description of optical delay lines used in OCT is also presented. concerned with modulation instability (MI) of electromagnetic waves in inhomogeneous and in discrete media. The article pays special attention to the MI of electromagnetic waves in nonlinear optical fibres with periodic amplification, dispersion and birefringence. The MI in random media is also covered. Other topics discussed in this article are discrete nonlinear systems with cubic, quadratic and vectorial interactions and nonlinear optical systems such as tunnel-coupled filters. Some of the readers may note that authors from six different countries have contributed to this volume, thus helping to maintain the international character of this series.
Twice reprinted and now also available in a paperback edition, this
book has already proved invaluable to a wide range of readers.
Written by a scientist for scientists and technical people, it goes
beyond the subject matter indicated by the title, filling the gap
which previously existed in the available technical literature. It
includes a wealth of information for physicists, chemists and
engineers who need to know more about thin films for research
purposes, or who want to use this special form of solid material to
achieve a variety of application-oriented goals.
This book is intended to help newly graduated chemists,
particularly organic chemists, at all levels from bachelors to
post-doctorates, find careers in the North American pharmaceutical
industry. It will serve as a practical, detailed guiedbook for job
seekers as well a reference work for faculty advisers, research
supervisors, development officers, employment agents, and personnel
managers in the industry. The book gathers in a single volume the
fundamentals of getting an industrial job as a medicinal or process
chemist, and covers all aspects of a chemist's job--scientific,
financial, and managerial--within a pharmaceutical/biotechnology
company. Other scientists looking for jobs as analytical or
physical chemists and even biochemists and biologists will find the
book useful. The valuable appendix is a unique compendium of 365
commercial, governmental, or non-profit institutions that comprise
the North American pharmaceutical industry.
In the thirty-seven years that have gone by since the first volume of Progress in Optics was published, optics has become one of the most dynamic fields of science. At the time of inception of this series, the first lasers were only just becoming operational, holography was in its infancy, subjects such as fiber optics, integrated optics and optoelectronics did not exist and quantum optics was the domain of only a few physicists. The term photonics had not yet been coined. Today these fields are flourishing and have become areas of specialisation for many science and engineering students and numerous research workers and engineers throughout the world. Some of the advances in these fields have been recognized by awarding Nobel prizes to seven physicists in the last twenty years. The volumes in this series which have appeared up to now contain nearly 190 review articles by distinguished research workers, which have become permanent records for many important developments. They have helped optical scientists and optical engineers to stay abreast of their fields. There is no sign that developments in optics are slowing down or becoming less interesting. We confidently expect that, just like their predecessors, future volumes of Progress in Optics will faithfully record the most important advances that are being made in optics and related fields.
This is the fourth volume in a series of survey articles covering many aspects of mathematical fluid dynamics, a vital source of open mathematical problems and exciting physics.
In recent years, the main research areas were photonuclear reactions and meson productions by using the first high-duty tagged photon beam and the TAGX spectrometer. Although this field is developing quite rapidly, the synchrotron was closed in 1999 after 37 years of operation, and these activities continue at new facilities. It was therfore a good time to discuss the present status and future directions of this field at this occasion. The Symposium was attended by 85 physicists and 35 talks were presented. This book contains the papers presented in the scientific program of the Symposium. aspects of kaon photoproduc
This book deals with the impact of uncertainty in input data on the
outputs of mathematical models. Uncertain inputs as scalars,
tensors, functions, or domain boundaries are considered. In
practical terms, material parameters or constitutive laws, for
instance, are uncertain, and quantities as local temperature, local
mechanical stress, or local displacement are monitored. The goal of
the worst scenario method is to extremize the quantity over the set
of uncertain input data.
This volume presents a review of the research in several areas of modern optics written by experts well-known in the international scientific community. The first chapter discusses properties and methods of production and detection of coherent superpositions of macroscopically distinguishable states of light (the so-called Schrodinger cat states). Chapter two deals with the phase-shift method, which originated in the 1930s, for the analysis of potential-scattering problems in atomic and nuclear physics. Recently this approach has been applied to wave propagation in one-dimensional inhomogeneous media. Chapter three is concerned with the statistical properties of dynamic laser speckles that arise from scattering objects with rough surfaces undergoing translation and rotation. A moving phase-screen model is employed, which gives a relatively simple formulation of the theory and a clear picture of the time-varying speckle phenomenon. The fourth chapter presents a review of the more important theoretical and experimental results relating to optics of multilayer systems with randomly rough boundaries. The significant theoretical approaches which make it possible to interpret experimental data involving such systems are described, and relevant methods for optical characterization of systems of this kind are outlined. The last chapter presents an account of a theory of the photon transport through turbid media.
This volume is the first of a series on Physical Techniques in the
Study of Art, Archaeology and Cultural Heritage. It follows a
successful earlier publication by Elsevier (Radiation in Art and
Archaeometry).
Now available in a convenient paperback edition! Volume 1 treats in
detail the fundamental concepts of the theory of groups and their
role in physics, plus their application to molecular and solid
state physics. In Volume 2 the theory of Lie groups and Lie
algebras is presented and applied to atomic and high-energy
physics, concluding with an account of the recently developed gauge
theories of fundamental interactions.
Hardbound. This volume contains six review articles dealing with topics of current research interest in optics and in related fields.The first article deals with the so-called embedding method, which has found many useful applications in the study of wave propagation in random media. The second article presents a review of an interesting class of non-linear optical phenomena which have their origin in the dependence of the complex dielectric constant of some media on the light intensity. These phenomena which include self-focusing, self-trapping and self-modulation have found many applications, for example in fiber optics devices, signal processing and computer technology. The next article is concerned with gap solitons which are electromagnetic field structures which can exist in nonlinear media that have periodic variation in their linear optical properties, with periodicities of the order of the wavelength of light. Both qualitative and quantitative |
You may like...
Advances in Infrared Photodetectors…
Chennupati Jagadish, Sarath Gunapala, …
Hardcover
R5,577
Discovery Miles 55 770
Optically Stimulated Luminescence…
L. Boetter-Jensen, S. W. S. McKeever, …
Hardcover
R6,141
Discovery Miles 61 410
|