![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Academic & Education > Professional & Technical > Physics
This series, established in 1965, is concerned with recent
developments in the general area of atomic, molecular and optical
physics. The field is in a state of rapid growth, as new
experimental and theoretical techniques are used on many old and
new problems.
This volume is a collection of papers which were presented at the
2001 International Conference on Rapid Thermal Processing (RTP
2001) held at Ise Shima, Mie, on November 14-16, 2001. This
symposium is second conference followed the previous successful
first International RTP conference held at Hokkaido in 1997. The
RTP 2001 covered the latest developments in RTP and other
short-time processing continuously aiming to point out the future
direction in the Silicon ULSI devices and II-VI, III-V compound
semiconductor devices.
The Russian-English volume contains about 50,000 terms covering various fields and subfields of nuclear engineering and technology: nuclear physics, thermonuclear research, nuclear reactors, nuclear fuel, isotopes, radiation, reliability and safety issues, environmental protection, emergency issues, radiation hazards. Terms from the military nuclear field are also included, as well as the names of nuclear power plants and nuclear societies worldwide. It also contains a section of about 250 abbreviations.
Introduction to Relativity is intended to teach physics and
astronomy majors at the freshman, sophomore or upper-division
levels how to think about special and general relativity in a
fundamental, but accessible, way. Designed to render any reader a
"master of relativity," everything on the subject is comprehensible
and derivable from first principles. The book emphasizes problem
solving, contains abundant problem sets, and is conveniently
organized to meet the needs of both student and instructor.
Solid state physics is the branch of physics that is primarily
devoted to the study of matter in its solid phase, especially at
the atomic level. This prestigious serial presents timely and
state-of-the-art reviews pertaining to all aspects of solid state
physics.
This series, established in 1965, is concerned with recent developments in the general area of atomic, molecular, and optical physics. The field is in a state of rapid growth, as new experimental and theoretical techniques are used on many old and new problems. Topics covered also include related applied areas, such as atmospheric science, astrophysics, surface physics, and laser physics. Articles are written by distinguished experts who are active in their research fields. The articles contain both relevant review material and detailed descriptions of important recent developments.
This series, established in 1965, is concerned with recent developments in the general area of atomic, molecular, and optical physics. The field is in a state of rapid growth, as new experimental and theoretical techniques are used on many old and new problems. Topics covered also include related applied areas, such as atmospheric science, astrophysics, surface physics, and laser physics. Articles are written by distinguished experts who are active in their research fields. The articles contain both relevant review material and detailed descriptions of important recent developments.
This is a practical textbook written for use by engineers,
scientists and technicians. It is not intended to be a rigorous
scientific treatment of the subject material, as this would fill
several volumes. Rather, it introduces the reader to the
fundamentals of the subject material, and provides sufficient
references for an in-depth study of the subject by the interested
technologist. The author has a lifetime teaching credential in the
California Community College System. Also, he has taught technical
courses with the American Vacuum Society for about 35 years.
Students attending many of these classes have backgrounds varying
from high-school graduates to Ph.D.s in technical disciplines. This
is an extremely difficult class profile to teach. This book still
endeavors to reach this same audience. Basic algebra is required to
master most of the material. But, the calculus is used in
derivation of some of the equations. The author risks use of the
first person "I," instead of "the author," and "you" instead of
"the reader." Both are thought to be in poor taste when writing for
publication in the scientific community. However, "I" am writing
this book for "you" because the subject is exciting, and I enjoy
teaching you, perhaps, something new. The book is written more in
the vein of a "one-on-one" discussion with you, rather than the
author lecturing to the reader. There are anecdotes, and examples
of some failures and successes I have had over the last forty-five
years in vacuum related activities, I'll try not to understate
either.
Since its inception in 1966, the series of numbered volumes known
as Semiconductors and Semimetals has distinguished itself through
the careful selection of well-known authors, editors, and
contributors. The Willardson and Beer series, as it is widely
known, has succeeded in producing numerous landmark volumes and
chapters. Not only did many of these volumes make an impact at the
time of their publication, but they continue to be well-cited years
after their original release. Recently, Professor Eicke R. Weber of
the University of California at Berkeley joined as a co-editor of
the series. Professor Weber, a well-known expert in the field of
semiconductor materials, will further contribute to continuing the
series' tradition of publishing timely, highly relevant, and
long-impacting volumes. Some of the recent volumes, such as
Hydrogen in Semiconductors, Imperfections in III/V Materials,
Epitaxial Microstructures, High-Speed Heterostructure Devices,
Oxygen in Silicon, and others promise that this tradition will be
maintained and even expanded.
Since its inception in 1966, the series of numbered volumes known
as Semiconductors and Semimetals has distinguished itself through
the careful selection of well-known authors, editors, and
contributors. The Willardson and Beer series, as it is widely
known, has succeeded in producing numerous landmark volumes and
chapters. Not only did many of these volumes make an impact at the
time of their publication, but they continue to be well-cited years
after their original release. Recently, Professor Eicke R. Weber of
the University of California at Berkeley joined as a co-editor of
the series. Professor Weber, a well-known expert in the field of
semiconductor materials, will further contribute to continuing the
series' tradition of publishing timely, highly relevant, and
long-impacting volumes. Some of the recent volumes, such as
Hydrogen in Semiconductors, Imperfections in III/V Materials,
Epitaxial Microstructures, High-Speed Heterostructure Devices,
Oxygen in Silicon, and others promise that this tradition will be
maintained and even expanded.
This series, established in 1965, is concerned with recent
developments in the general area of atomic, molecular, and optical
physics. The field is in a state of rapid growth, as new
experimental and theoretical techniques are used on many old and
new problems. Topics covered also include related applied areas,
such as
This book is intended to help newly graduated chemists,
particularly organic chemists, at all levels from bachelors to
post-doctorates, find careers in the North American pharmaceutical
industry. It will serve as a practical, detailed guiedbook for job
seekers as well a reference work for faculty advisers, research
supervisors, development officers, employment agents, and personnel
managers in the industry. The book gathers in a single volume the
fundamentals of getting an industrial job as a medicinal or process
chemist, and covers all aspects of a chemist's job--scientific,
financial, and managerial--within a pharmaceutical/biotechnology
company. Other scientists looking for jobs as analytical or
physical chemists and even biochemists and biologists will find the
book useful. The valuable appendix is a unique compendium of 365
commercial, governmental, or non-profit institutions that comprise
the North American pharmaceutical industry.
This series, established in 1965, is concerned with recent
developments in the general area of atomic, molecular, and optical
physics. The field is in a state of rapid growth, as new
experimental and theoretical techniques are used on many old and
new problems. Topics covered also include related applied areas,
such as atmospheric science, astrophysics, surface physics, and
laser physics.
Biology in Physics is a radical new book which bridges the gap
between biology and physics. The aim is to promote an
interdisciplinary exchange of scientific information and ideas, in
order to stimulate cooperation in research. The scope of this
volume explores both the concepts and techniques of biophysics and
illustrates the latest advances in our understanding of many of the
specific mechanisms that are used by living organisms. This volume
represents a special effort to bring together the information that
would allow a nonbiologically oriented physicist to appreciate the
important role that physics plays in life sciences.
This series provides a venue for longer reviews of current advances in geophysics. Written at a level accessible to graduate students, the articles serve to broaden knowledge of various fields and may be useful in courses and seminars.
This series, established in 1965, is concerned with recent developments in the general area of atomic, molecular, and optical physics. The field is in a state of rapid growth, as new experimental and theoretical techniques are used on many old and new problems. Topics covered also include related applied areas, such as atmospheric science, astrophysics, surface physics, and laser physics.
This volume is concerned with the crystal growth, optical
properties, and optical device application of the self-formed
quantum dot, which is one of the major current subjects in the
semiconductor research field.
Since its inception in 1966, the series of numbered volumes known
as Semiconductors and Semimetals has distinguished itself through
the careful selection of well-known authors, editors, and
contributors. The "Willardson and Beer" Series, as it is widely
known, has succeeded in publishing numerous landmark volumes and
chapters. Not only did many of these volumes make an impact at the
time of their publication, but they continue to be well-cited years
after their original release. Recently, Professor Eicke R. Weber of
the University of California at Berkeley joined as a co-editor of
the series. Professor Weber, a well-known expert in the field of
semiconductor materials, will further contribute to continuing the
series' tradition of publishing timely, highly relevant, and
long-impacting volumes. Some of the recent volumes, such as
Hydrogen in Semiconductors, Imperfections in III/V Materials,
Epitaxial Microstructures, High-Speed Heterostructure Devices,
Oxygen in Silicon, and others promise that this tradition will be
maintained and even expanded.
Since its inception in 1966, the series of numbered volumes known
as Semiconductors and Semimetals has distinguished itself through
the careful selection of well-known authors, editors, and
contributors. The "Willardson and Beer" Series, as it is widely
known, has succeeded in publishing numerous landmark volumes and
chapters. Not only did many of these volumes make an impact at the
time of their publication, but they continue to be well-cited years
after their original release. Recently, Professor Eicke R. Weber of
the University of California at Berkeley joined as a co-editor of
the series. Professor Weber, a well-known expert in the field of
semiconductor materials, will further contribute to continuing the
series' tradition of publishing timely, highly relevant, and
long-impacting volumes. Some of the recent volumes, such as
Hydrogen in Semiconductors, Imperfections in III/V Materials,
Epitaxial Microstructures, High-Speed Heterostructure Devices,
Oxygen in Silicon, and others promise that this tradition will be
maintained and even expanded.
Since its inception in 1966, the series of numbered volumes known
as Semiconductors and Semimetals has distinguished itself through
the careful selection of well-known authors, editors, and
contributors. The "Willardson and Beer" Series, as it is widely
known, has succeeded in publishing numerous landmark volumes and
chapters. Not only did many of these volumes make an impact at the
time of their publication, but they continue to be well-cited years
after their original release. Recently, Professor Eicke R. Weber of
the University of California at Berkeley joined as a co-editor of
the series. Professor Weber, a well-known expert in the field of
semiconductor materials, will further contribute to continuing the
series' tradition of publishing timely, highly relevant, and
long-impacting volumes. Some of the recent volumes, such as
Hydrogen in Semiconductors, Imperfections in III/V Materials,
Epitaxial Microstructures, High-Speed Heterostructure Devices,
Oxygen in Silicon, and others promise indeed that this tradition
will be maintained and even expanded.
This series, established in 1965, is concerned with recent
developments in the general area of atomic, molecular, and optical
physics. The field is in a state of rapid growth, as new
experimental and theoretical techniques are used on many old and
new problems. Topics covered also include related applied areas,
such as atmospheric science, astrophysics, surface physics, and
laser physics.
Since its inception in 1966, the series of numbered volumes known
as Semiconductors and Semimetals has distinguished itself through
the careful selection of well-known authors, editors, and
contributors. The "Willardson and Beer" Series, as it is widely
known, has succeeded in publishing numerous landmark volumes and
chapters. Not only did many of these volumes make an impact at the
time of their publication, but they continue to be well-cited years
after their original release. Recently, Professor Eicke R. Weber of
the University of California at Berkeley joined as a co-editor of
the series. Professor Weber, a well-known expert in the field of
semiconductor materials, will further contribute to continuing the
series' tradition of publishing timely, highly relevant, and
long-impacting volumes. Some of the recent volumes, such as
Hydrogen in Semiconductors, Imperfections in III/V Materials,
Epitaxial Microstructures, High-Speed Heterostructure Devices,
Oxygen in Silicon, and others promise indeed that this tradition
will be maintained and even expanded.
Since its inception in 1966, the series of numbered volumes known
as Semiconductors and Semimetals has distinguished itself through
the careful selection of well-known authors, editors, and
contributors. The "Willardson and Beer" Series, as it is widely
known, has succeeded in publishing numerous landmark volumes and
chapters. Not only did many of these volumes make an impact at the
time of their publication, but they continue to be well-cited years
after their original release. Recently, Professor Eicke R. Weber of
the University of California at Berkeley joined as a co-editor of
the series. Professor Weber, a well-known expert in the field of
semiconductor materials, will further contribute to continuing the
series' tradition of publishing timely, highly relevant, and
long-impacting volumes. Some of the recent volumes, such as
Hydrogen in Semiconductors, Imperfections in III/V Materials,
Epitaxial Microstructures, High-Speed Heterostructure Devices,
Oxygen in Silicon, and others promise indeed that this tradition
will be maintained and even expanded.
In this second edition several new topics of technological interest have been added. These include: coupled mechanical and nonmechanical overall properties of heterogeneous piezoelectric materials, new upper and lower bounds for these coupled properties, a systematic comparison between the average-field theory and the results obtained using multi-scale perturbation theory, an account of the uniform-field theory, improveable bounds on overall moduli of heterogeneous materials which remain finite even when isolated cavities and rigid inclusions are present, and a brief account of a fundamental duality principle in anisotropic elasticity. In addition, better explanations of a number of topics are given, more recent references are added, the Subject Index has been expanded and printing and typographical errors have been corrected.
Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors.The"Willardson and Beer"Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise indeed that this tradition will be maintained and even expanded.Reflecting the truly interdisciplinary nature of the field that the series covers, the volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in modern industry. |
You may like...
Advances in Atomic, Molecular, and…
Ennio Arimondo, Paul R. Berman, …
Hardcover
R4,828
Discovery Miles 48 280
Advances in Atomic, Molecular, and…
Paul R. Berman, Ennio Arimondo, …
Hardcover
R5,477
Discovery Miles 54 770
Collisional Effects on Molecular Spectra…
Jean-Michel Hartmann, Christian Boulet, …
Hardcover
R3,890
Discovery Miles 38 900
Quantum Efficiency in Complex Systems…
Uli Wurfel, Michael Thorwart, …
Hardcover
R5,571
Discovery Miles 55 710
|