![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Academic & Education > Professional & Technical > Physics
"Advances in Imaging and Electron Physics " merges two long-running
serials--"Advances in Electronics and Electron Physics" and
"Advances in Optical and Electron Microscopy."
"Advances in Imaging and Electron Physics " merges two long-running
serials--"Advances in Electronics and Electron Physics" and
"Advances in Optical and Electron Microscopy."
"Advances in Imaging and Electron Physics " merges two long-running
serials--"Advances in Electronics and Electron Physics" and
"Advances in Optical and Electron Microscopy."
"Advances in Imaging and Electron Physics " merges two long-running
serials--"Advances in Electronics and Electron Physics" and
"Advances in Optical and Electron Microscopy."
This volume continues the tradition of the Advances series. It
contains contributions from experts in the field of atomic,
molecular, and optical (AMO) physics. The articles contain some
review material, but are intended to provide a comprehensive
picture of recent important developments in AMO physics. Both
theoretical and experimental articles are included in the volume.
"Advances in Imaging and Electron Physics " merges two long-running
serials--"Advances in Electronics and Electron Physics" and
"Advances in Optical and Electron Microscopy."
In the50years since the first volume of "Progress in Optics" was
published, optics has become one of the most dynamic fields of
science. The volumes in this series that have appeared up to now
contain more than 300 review articles by distinguished research
workers, which have become permanent records for many important
developments, helping optical scientists and optical engineers stay
abreast of their fields.
Advances in Imaging and Electron Physics merges two long-running serials--Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. Updated with contributions from leading international scholars
and industry experts
In the forty-eight years that have gone by since the first volume
of Progress in Optics was published, optics has become one of the
most dynamic fields of science. The volumes in this series which
have appeared up to now contain more than 300 review articles by
distinguished research workers, which have become permanent records
for many important developments.
This book sets out to explain the development of modern electronic
systems and devices from the viewpoint of the semiconductor
materials (germanium, silicon, gallium arsenide and many others)
which made them possible. It covers the scientific understanding of
these materials and its intimate relationship with their technology
and many applications. It began with Michael Faraday, took off in a
big way with the invention of the transistor at Bell Labs in 1947
and is still burgeoning today. It is a story to match any artistic
or engineering achievement of man and this is the first time it has
been presented in a style suited to the non-specialist. It is
written in a lively, non-mathematical style which brings out the
excitement of discovery and the fascinating interplay between the
demands of system pull and technological push. It also looks at the
nature of some of the personal interactions which helped to shape
the modern technological world.
In the fourty-seven years that have gone by since the first volume
of Progress in Optics was published, optics has become one of the
most dynamic fields of science. The volumes in this series which
have appeared up to now contain more than 300 review articles by
distinguished research workers, which have become permanent records
for many important developments.
"Advances in Imaging and Electron Physics" merges two long-running serials--"Advances in Electronics and Electron Physics" and "Advances in Optical and Electron Microscopy." This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.
The purpose of the book is to give a survey of the physics that is
relevant for biological applications, and also to discuss what kind
of biology needs physics. The book gives a broad account of basic
physics, relevant for the applications and various applications
from properties of proteins to processes in the cell to wider
themes such as the brain, the origin of life and evolution. It also
considers general questions of common interest such as
reductionism, determinism and randomness, where the physics view
often is misunderstood. The subtle balance between order and
disorder is a repeated theme appearing in many contexts. There are
descriptive parts which shall be sufficient for the comprehension
of general ideas, and more detailed, formalistic parts for those
who want to go deeper, and see the ideas expressed in terms of
mathematical formulas.
This volume continues the tradition of the Advances series. It
contains contributions from experts in the field of atomic,
molecular, and optical (AMO) physics. The articles contain some
review material, but are intended to provide a comprehensive
picture of recent important developments in AMO physics. Both
theoretical and experimental articles are included in the volume.
Gas phase molecular spectroscopy is a powerful tool for obtaining
information on the geometry and internal structure of isolated
molecules as well as on the interactions that they undergo. It
enables the study of fundamental parameters and processes and is
also used for the sounding of gas media through optical techniques.
It has been facing always renewed challenges, due to the
considerable improvement of experimental techniques and the
increasing demand for accuracy and scope of remote sensing
applications.
The sixteen papers collected in this volume are expanded and
revised versions of talks delivered at the Second International
Conference on the Ontology of Spacetime, organized by the
International Society for the Advanced Study of Spacetime (John
Earman, President) at Concordia University (Montreal) from 9 to 11
June 2006.
In the fourty-six years that have gone by since the first volume of
Progress in Optics was published, optics has become one of the most
dynamic fields of science. The volumes in this series which have
appeared up to now contain more than 300 review articles by
distinguished research workers, which have become permanent records
for many important developments.
Ray, wave and quantum concepts are central to diverse and seemingly
incompatible models of light. Each model particularizes a specific
''manifestation'' of light, and then corresponds to adequate
physical assumptions and formal approximations, whose domains of
applicability are well-established. Accordingly each model
comprises its own set of geometric and dynamic postulates with the
pertinent mathematical means.
There has been recently some interdisciplinary convergence on a
number of precise topics which can be considered as prototypes of
complex systems. This convergence is best appreciated at the level
of the techniques needed to deal with these systems, which include:
Dislocations are lines of irregularity in the structure of a solid
analogous to the bumps in a badly laid carpet. Like these bumps
they can be easily moved, and they provide the most important
mechanism by which the solid can be deformed. They also have a
strong influence on crystal growth and on the electronic properties
of semiconductors.
Volume 54 of the Advances Series contains ten contributions,
covering a diversity of subject areas in atomic, molecular and
optical physics. The article by Regal and Jin reviews the
properties of a Fermi degenerate gas of cold potassium atoms in the
crossover regime between the Bose-Einstein condensation of
molecules and the condensation of fermionic atom pairs. The
transition between the two regions can be probed by varying an
external magnetic field. Sherson, Julsgaard and Polzik explore the
manner in which light and atoms can be entangled, with applications
to quantum information processing and communication. They report on
the result of recent experiments involving the entanglement of
distant objects and quantum memory of light. Recent developments in
cold Rydberg atom physics are reviewed in the article by Choi,
Kaufmann, Cubel-Liebisch, Reinhard, and Raithel. Fascinating
experiments are described in which cold, highly excited atoms
(???Rydberg??? atoms) and cold plasmas are generated. Evidence for
a collective excitation of Rydberg matter is also presented.
Griffiin and Pindzola offer an account of non-perturbative quantal
methods for electron-atom scattering processes. Included in the
discussion are the R-matrix with pseudo-states method and the
time-dependent close-coupling method. An extensive review of the
R-matrix theory of atomic, molecular, and optical processes is
given by Burke, Noble, and Burke. They present a systematic
development of the R-matrix method and its applications to various
processes such as electron-atom scattering, atomic photoionization,
electron-molecule scattering, positron-atom scattering, and
atomic/molecular multiphoton processes. Electron impactexcitation
of rare-gas atoms from both their ground and metastable states is
discussed in the article by Boffard, Jung, Anderson, and Lin.
Excitation cross sections measured by the optical method are
reviewed with emphasis on the physical interpretation in terms of
electronic structure of the target atoms. Ozier and Moazzen-Ahmadi
explore internal rotation of symmetric top molecules. Developments
of new experimental methods based on high-resolution torsional,
vibrational, and molecular beam spectroscopy allow accurate
determination of internal barriers for these symmetric molecules.
The subject of attosecond and angstrom science is reviewed by
Niikura and Corkum. The underlying physical mechanisms allowing one
to generate attosecond radiation pulses are described and the
technology needed for the preparation of such pulses is discussed.
LeGou??t, Bretenaker, and Lorger?? describe how rare earth ions
embedded in crystals can be used for processing optically carried
broadband radio-frequency signals. Methods for reaching tens of
gigahertz instantaneous bandwidth with submegahertz resolution
using such devices are analyzed in detail and demonstrated
experimentally. Finally, in the article by Illing, Gauthier, and
Roy, it is shown that small perturbations applied to optical
systems can be used to suppress or control optical chaos,
spatio-temporal dynamics, and patterns. Applications of these
techniques to communications, laser stabilization, and improving
the sensitivity of low-light optical switches are explored.
This book is a result of many years of author's research and
teaching on random vibration and control. It was used as lecture
notes for a graduate course. It provides a systematic review of
theory of probability, stochastic processes, and stochastic
calculus. The feedback control is also reviewed in the book. Random
vibration analyses of SDOF, MDOF and continuous structural systems
are presented in a pedagogical order. The application of the random
vibration theory to reliability and fatigue analysis is also
discussed. Recent research results on fatigue analysis of
non-Gaussian stress processes are also presented. Classical
feedback control, active damping, covariance control, optimal
control, sliding control of stochastic systems, feedback control of
stochastic time-delayed systems, and probability density tracking
control are studied. Many control results are new in the literature
and included in this book for the first time. The book serves as a
reference to the engineers who design and maintain structures
subject to harsh random excitations including earthquakes, sea
waves, wind gusts, and aerodynamic forces, and would like to reduce
the damages of structural systems due to random excitations.
The book presents the recent achievements on bifurcation studies of
nonlinear dynamical systems. The contributing authors of the book
are all distinguished researchers in this interesting subject area.
The first two chapters deal with the fundamental theoretical issues
of bifurcation analysis in smooth and non-smooth dynamical systems.
The cell mapping methods are presented for global bifurcations in
stochastic and deterministic, nonlinear dynamical systems in the
third chapter. The fourth chapter studies bifurcations and chaos in
time-varying, parametrically excited nonlinear dynamical systems.
The fifth chapter presents bifurcation analyses of modal
interactions in distributed, nonlinear, dynamical systems of
circular thin von Karman plates. The theories, methods and results
presented in this book are of great interest to scientists and
engineers in a wide range of disciplines. This book can be adopted
as references for mathematicians, scientists, engineers and
graduate students conducting research in nonlinear dynamical
systems.
Advances in Imaging and Electron Physics/B> merges two long-running serials-Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.
Bacon and Osetsky present an atomistic model of
dislocation-particle interactions in metal systems, including
irradiated materials. This work is important in simulating actual
behavior, removing earlier reliance on assumed mechanisms for
dislocation motion. New mechanisms for dislocation generation under
shock loading are presented by Meyers et al. These models provide a
basis for understanding the constitutive behavior of shocked
material. Saada and Dirras provide a new perspective on the
Hall-Petch relation, with particular emphasis on nanocrystals. Of
particular significance, deviations from the traditional stress
proportional to the square-root of grain size relation are
explained. Robertson et al consider a number of effects of hydrogen
on plastic flow and provide a model that provides an explanation of
the broad range of properties. . |
You may like...
Leatherpress Pacific Blue Genuine…
Leatherpress
Leather / fine binding
The Official Iron Maiden Colouring Book
Rock N' Roll Colouring
Paperback
|