![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Academic & Education > Professional & Technical > Physics
Advances in Imaging and Electron Physics merges two long-running serials-Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.
This book contains selected papers from the First International
Conference on the Ontology of Spacetime. Its fourteen chapters
address two main questions: first, what is the current status of
the substantivalism/relationalism debate, and second, what about
the prospects of presentism and becoming within present-day physics
and its philosophy? The overall tenor of the four chapters of the
book's first part is that the prospects of spacetime
substantivalism are bleak, although different possible positions
remain with respect to the ontological status of spacetime. Part II
and Part III of the book are devoted to presentism, eternalism, and
becoming, from two different perspectives. In the six chapters of
Part II it is argued, in different ways, that relativity theory
does not have essential consequences for these issues. It certainly
is true that the structure of time is different, according to
relativity theory, from the one in classical theory. But that does
not mean that a decision is forced between presentism and
eternalism, or that becoming has proved to be an impossible
concept. It may even be asked whether presentism and eternalism
really offer different ontological perspectives at all. The writers
of the last four chapters, in Part III, disagree. They argue that
relativity theory is incompatible with becoming and presentism.
Several of them come up with proposals to go beyond relativity, in
order to restore the prospects of presentism.
This book is devoted to an important branch of the dynamical systems theory: the study of the fine (fractal) structure of Poincare recurrences -instants of time when the system almost repeats its initial state. The authors were able to write an entirely self-contained text including many insights and examples, as well as providing complete details of proofs. The only prerequisites are a basic knowledge of analysis and topology. Thus this book can serve as a graduate text or self-study guide for courses in applied mathematics or nonlinear dynamics (in the natural sciences). Moreover, the book can be used by specialists in applied nonlinear dynamics following the way in the book. The authors applied the mathematical theory developed in the book to two important problems: distribution of Poincare recurrences for nonpurely chaotic Hamiltonian systems and indication of synchronization regimes in coupled chaotic individual systems.
The book requires only rudimentary physics knowledge but ability to
program computers creatively and to keep the mind open to simple
and not so simple models, based in individuals, for the living
world around us.
Benjamin Bederson contributed to the world of physics in many
areas: in atomic physics, where he achieved renown by his
scattering and polarizability experiments, as the Editor-in-Chief
for the American Physical Society, where he saw the introduction of
electronic publishing and a remarkable growth of the APS journals,
with ever increasing world-wide contributions to these highly
esteemed journals, and as the originator of a number of
international physics conferences in the fields of atomic and
collision physics, which are continuing to this day. Bederson was
also a great teacher and university administrator.
In this volume, six review articles which cover a broad range of
topics of current interest in modern optics are included.
Hardbound. It is a pleasure to record that Progress in Optics is commencing the fifth decade of its existence. The first volume was published in 1961, only a few months after the invention of the laser. This event triggered a wealth of new and exciting developments, many of which were reported in the 240 review articles which were published in this series since its inception. The present volume contains seven articles covering a wide range of subjects. The first article, by M.H. Fields, J. Popp, and R.K. Chang, presents a review of various optical effects in spherical and circular micro-cavities capable of supporting high-Q resonant modes (commonly referred to as morphology-dependent resonances (MDRs) or whispering gallery modes (WGMs)). The article treats the theory of symmetrical and deformed micro-cavities and describes recent research and development in the areas of quantum electrodynamics, lasers, optical spectroscopy, and filters for
It has been recognised recently that the strange features of the
quantum world could be used for new information transmission or
processing functions such as quantum cryptography or, more
ambitiously, quantum computing. These fascinating perspectives
renewed the interest in fundamental quantum properties and lead to
important theoretical advances, such as quantum algorithms and
quantum error correction codes. On the experimental side,
remarkable advances have been achieved in quantum optics, solid
state physics or nuclear magnetic resonance. This book presents the
lecture notes of the Les Houches Summer School on 'Quantum
entanglement and information processing'. Following the long
tradition of the les Houches schools, it provides a comprehensive
and pedagogical approach of the whole field, written by renowned
specialists.
This is the first volume to appear under the joint editorship of J.P. Hirth and F.R.N. Nabarro. While Volume 11 concentrated on the single topic of dislocations and work hardening, the present volume spreads over the whole range of the study of dislocations from the application by Kleman and his colleagues of homotopy theory to classifying the line and point defects of mesomorphic phases to Chaudhri's account of the experimental observations of dislocations formed around indentations. Chapter 64, by Cai, Bulatove, Chang, Li and Yip, discusses the influence of the structure of the core of a dislocation on its mobility. The power of modern computation allows this topic to be treated from the first principles of electron theory, and with empirical potentials for more complicated problems. Advances in electron microscopy allow these theoretical predictions to be tested. In Chapter 65, Xu analyzes the emission of dislocations from the tip of a crack and its influence on the brittle to ductile transition. Again, the treatment is predominantly theoretical, but it is consistently related to the very practical example of alpha iron. In a dazzling interplay of experiment and abstract mathematics, Kleman, Lavrentovich and Nastishin analyze the line and point structural defects of the many mesomorphic phases which have become known in recent years. Chapter 67, by Coupeau, Girard and Rabier, is essentially experimental. It shows how the various modern techniques of scanning probe microscopy can be used to study dislocations and their interaction with the free surface. Chapter 68, by Mitchell and Heuer, considers the complex dislocations that can form in ceramic crystals on the basisof observations by transmission electron microscopy and presents mechanistic models for the motion of the dislocations in various temperature regimes. While the underlying aim of the study of dislocations in energetic crystals by Armstrong and Elban in Chapter 69 is to understand the role of dislocations in the process of detonation, it has the wider interest of studying dislocations in molecular crystals which are elastically soft, plastically hard, and brittle''. Chaudhri in Chapter 70 discusses the role of dislocations in indentation processes, largely on the basis of the elastic analysis by E.H. Yoffe. The special case of nanoindentations is treated only briefly.
This book is a collection of some of the invited talks presented at
the international meeting held at the Max Planck Institut fuer
Physik Komplexer Systeme, Dresden, Germany during August 6-30,
2001, on the rapidly developing field of nanoscale science in
science and bio-electronics Semiconductor physics has experienced
unprecedented developments over the second half of the twentieth
century. The exponential growth in microelectronic processing power
and the size of dynamic memorie has been achieved by significant
downscaling of the minimum feature size. Smaller feature sizes
result in increased functional density, faster speed, and lower
costs. In this process one is reaching the limits where quantum
effects and fluctuations are beginning to play an important
role.
This volume emphasises studies related to
Neutron Scattering from Magnetic Materials is a comprehensive
account of the present state of the art in the use of the neutron
scattering for the study of magnetic materials. The chapters have
been written by well-known researchers who are at the forefront of
this field and have contributed directly to the development of the
techniques described. Neutron scattering probes magnetic phenomena
directly. The generalized magnetic susceptibility, which can be
expressed as a function of wave vector and energy, contains all the
information there is to know about the statics and dynamics of a
magnetic system and this quantity is directly related to the
neutron scattering cross section. Polarized neutron scattering
techniques raise the sophistication of measurements to even greater
levels and gives additional information in many cases. The present
book is largely devoted to the application of polarized neutron
scattering to the study of magnetic materials. It will be of
particular interest to graduate students and researchers who plan
to investigate magnetic materials using neutron scattering.
The scientific program of these important proceedings was arranged
to cover most of the field of neutrino physics. In light of the
rapid growth of interest stimulated by new interesting results from
the field, more than half of the papers presented here are related
to the neutrino mass and oscillations, including atmospheric and
solar neutrino studies. Neutrino mass and oscillations could imply
the existence of a mass scale many orders of magnitudes higher than
presented in current physics and will probably guide scientists
beyond the standard model of particle physics.
Intelligent systems are required to enhance the capacities being made available to us by the internet and other computer based technologies. The theory necessary to help providing solutions to difficult problems in the construction of intelligent systems are discussed. In particular, attention is paid to situations in which the available information and data may be imprecise, uncertain, incomplete or of a linguistic nature. Various methodologies to manage such information are discussed. Among these are the probabilistic, possibilistic, fuzzy, logical, evidential and network-based frameworks.
"
This is a practical textbook written for use by engineers,
scientists and technicians. It is not intended to be a rigorous
scientific treatment of the subject material, as this would fill
several volumes. Rather, it introduces the reader to the
fundamentals of the subject material, and provides sufficient
references for an in-depth study of the subject by the interested
technologist. The author has a lifetime teaching credential in the
California Community College System. Also, he has taught technical
courses with the American Vacuum Society for about 35 years.
Students attending many of these classes have backgrounds varying
from high-school graduates to Ph.D.s in technical disciplines. This
is an extremely difficult class profile to teach. This book still
endeavors to reach this same audience. Basic algebra is required to
master most of the material. But, the calculus is used in
derivation of some of the equations. The author risks use of the
first person "I," instead of "the author," and "you" instead of
"the reader." Both are thought to be in poor taste when writing for
publication in the scientific community. However, "I" am writing
this book for "you" because the subject is exciting, and I enjoy
teaching you, perhaps, something new. The book is written more in
the vein of a "one-on-one" discussion with you, rather than the
author lecturing to the reader. There are anecdotes, and examples
of some failures and successes I have had over the last forty-five
years in vacuum related activities, I'll try not to understate
either.
New models for dislocation structure and motion are presented for
nanocrystals, nucleation at grain boundaries, shocked crystals,
interphase interfaces, quasicrystals, complex structures with
non-planar dislocation cores, and colloidal crystals. A review of
experimentally established main features of the magnetoplastic
effect with their physical interpretation explains many diverse
results of this type. The model has many potential applications for
forming processes influenced by magnetic fields.
The origin of the word synchronization is a greek root, meaning "to
share the common time." The original meaning of synchronization has
been maintained up to now in the colloquial use of this word, as
agreement or correlation in time of different processes.
Historically, the analysis of synchronization phenomena in the
evolution of dynamical systems has been a subject of active
investigation since the earlier days of physics.
This book provides a series of concise lectures on the fundamental
theories of statistical mechanics, carefully chosen examples and a
number of problems with complete solutions.
Metallic nanoparticles display fascinating properties that are
quite different from those of individual atoms, surfaces or bulk
rmaterials. They are a focus of interest for fundamental science
and, because of their huge potential in nanotechnology, they are
the subject of intense research effort in a range of disciplines.
Applications, or potential applications, are diverse and
interdisciplinary. They include, for example, use in biochemistry,
in catalysis and as chemical and biological sensors, as systems for
nanoelectronics and nanostructured magnetism (e.g. data storage
devices), where the drive for further miniaturization provides
tremendous technological challenges and, in medicine, there is
interest in their potential as agents for drug delivery.
This book discussed fundamental problems in dynamics, which
extensively exist in engineering, natural and social sciences. The
book presented a basic theory for the interactions among many
dynamical systems and for a system whose motions are constrained
naturally or artificially. The methodology and techniques presented
in this book are applicable to discontinuous dynamical systems in
physics, engineering and control. In addition, they may provide
useful tools to solve non-traditional dynamics in biology, stock
market and internet network et al, which cannot be easily solved by
the traditional Newton mechanics. The new ideas and concepts will
stimulate ones' thought and creativities in corresponding subjects.
The author also used the simple, mathematical language to write
this book. Therefore, this book is very readable, which can be
either a textbook for senior undergraduate and graduate students or
a reference book for researches in dynamics.
Optics has become one of the most dynamic fields of science since the first volume of Progress in Optics was published, forty years ago. At the time of inception of this series, the first lasers were only just becoming operational, holography was in its infancy, subjects such as fiber optics, integrated optics and optoelectronics did not exist and quantum optics was the domain of only a few physicists. The term photonics had not yet been coined. Today these fields are flourishing and have become areas of specialisation for many science and engineering students and numerous research workers and engineers throughout the world. Some of the advances in these fields have been recognized by awarding Nobel prizes to seven physicists in the last twenty years. The volumes in this series which have appeared up to now contain 240 review articles by distinguished research workers, which have become permanent records for many important developments. They have helped optical scientists and optical engineers to stay abreast of their fields. There is no sign that developments in optics are slowing down or becoming less interesting. We confidently expect that, just like their predecessors, future volumes of Progress in Optics will faithfully record the most important advances that are being made in optics and related fields.
This book presents an introduction to the classical theories of continuum mechanics; in particular, to the theories of ideal, compressible, and viscous fluids, and to the linear and nonlinear theories of elasticity. These theories are important, not only because they are applicable to a majority of the problems in continuum mechanics arising in practice, but because they form a solid base upon which one can readily construct more complex theories of material behavior. Further, although attention is limited to the classical theories, the treatment is modern with a major emphasis on foundations and structure
In its original form, this widely acclaimed primer on the
fundamentals of quantized semiconductor structures was published as
an introductory chapter in Raymond Dingle's edited volume (24) of
Semiconductors and Semimetals. Having already been praised by
reviewers for its excellent coverage, this material is now
available in an updated and expanded "student edition." This work
promises to become a standard reference in the field. It covers the
basics of electronic states as well as the fundamentals of optical
interactions and quantum transport in two-dimensional quantized
systems. This revised student edition also includes entirely new
sections discussing applications and one-dimensional and
zero-dimensional systems.
Quantum mechanics transcends and supplants classical mechanics
at the atomic and subatomic levels. It provides the underlying
framework for many subfields of physics, chemistry and materials
science, including condensed matter physics, atomic physics,
molecular physics, quantum chemistry, particle physics, and nuclear
physics. It is the only way we can understand the structure of
materials, from the semiconductors in our computers to the metal in
our automobiles. It is also the scaffolding supporting much of
nanoscience and nanotechnology. The purpose of this book is to
present the fundamentals of quantum theory within a modern
perspective, with emphasis on applications to nanoscience and
nanotechnology, and information-technology. As the frontiers of
science have advanced, the sort of curriculum adequate for students
in the sciences and engineering twenty years ago is no longer
satisfactory today. Hence, the emphasis on new topics that are not
included in older reference texts, such as quantum information
theory, decoherence and dissipation, and on applications to
nanotechnology, including quantum dots, wires and wells. Key Features This book provides a novel approach to Quantum Mechanics whilst also giving readers the requisite background and training for the scientists and engineers of the 21st Century who need to come to grips with quantum phenomena. The fundamentals of quantum theory are provided within a modern perspective, with emphasis on applications to nanoscience and nanotechnology, and information-technology. Benefits Older books on quantum mechanics do not contain the amalgam of ideas, concepts and tools necessary to prepare engineers and scientists to deal with the new facets of quantum mechanics and their application to quantum information science and nanotechnology. As the frontiers of science have advanced, the sort of curriculum adequate for students in the sciences and engineering twenty years ago is no longer satisfactory today. There are many excellent quantum mechanics books available, but none have the emphasis on nanotechnology and quantum information science thatthis book has. "
Solid state physics is the branch of physics primarily devoted to
the study of matter in its solid phase, especially at the atomic
level. This prestigious serial presents timely and state-of-the-art
reviews pertaining to all aspects of solid state physics. Key features: * Contributions from leading authorities * Informs and updates on all the latest developments in the field |
You may like...
|