![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Academic & Education > Professional & Technical > Physics
Solid state physics is the branch of physics primarily devoted to
the study of matter in its solid phase, especially at the atomic
level. This prestigious serial presents timely and state-of-the-art
reviews pertaining to all aspects of solid state physics. Key features: * Contributions from leading authorities * Informs and updates on all the latest developments in the field
"Advances in Imaging and Electron Physics "merges two long-running serials--"Advances in Electronics and Electron Physics" and "Advances in Optical and Electron Microscopy." This series features extended articles on the physics of
electron devices (especially semiconductor devices), particle
optics at high and low energies, microlithography, image science
and digital image processing, electromagnetic wave propagation,
electron microscopy, and the computing methods used in all these
domains. * Contributions from leading authorities * Informs and updates on all the latest developments in the field
"Fusion: The Energy of the Universe, 2e"is an essential
reference providing basic principles of fusion energy from its
history to the issues and realities progressing from the present
day energy crisis. The book provides detailed developments and
applications for researchers entering the field of fusion energy
research. This second edition includes the latest results from the
National Ignition Facility at the Lawrence Radiation Laboratory at
Livermore, CA, and the progress on the International Thermonuclear
Experimental Reactor (ITER) tokamak programme at Caderache,
France.
"Advances in Imaging and Electron Physics "merges two long-running
serials--"Advances in Electronics and Electron Physics" and
"Advances in Optical and Electron Microscopy." * Contributions from leading authorities * Informs and updates on all the latest developments in the field
This special volume of "Advances in Imaging and Electron Physics
"details the current theory, experiments, and applications of
neutron and x-ray optics and microscopy for an international
readership across varying backgrounds and disciplines. Edited by
Dr. Ted Cremer, these volumes attempt to provide rapid assimilation
of the presented topics that include neutron and x-ray scatter,
refraction, diffraction, and reflection and their potential
application. * Contributions from leading authorities * Informs and updates on all the latest developments in the field
"Advances in Imaging and Electron Physics "merges two long-running
serials--"Advances in Electronics and Electron Physics" and
"Advances in Optical and Electron Microscopy."
"Advances in Imaging and Electron Physics "merges two long-running
serials--"Advances in Electronics and Electron Physics" and
"Advances in Optical and Electron Microscopy."
Solid state physics is the branch of physics primarily devoted to the study of matter in its solid phase, especially at the atomic level. This prestigious serial presents timely and state-of-the-art reviews pertaining to all aspects of solid state physics.
"Advances in Imaging and Electron Physics "merges two long-running
serials--"Advances in Electronics and Electron Physics" and
"Advances in Optical and Electron Microscopy."
"Advances in Imaging and Electron Physics "merges two long-running serials--"Advances in Electronics and Electron Physics" and "Advances in Optical and Electron Microscopy." This series features extended articles on the physics of
electron devices (especially semiconductor devices), particle
optics at high and low energies, microlithography, image science
and digital image processing, electromagnetic wave propagation,
electron microscopy, and the computing methods used in all these
domains.
The critically acclaimed serialized review journal for over 50 years, "Advances in Geophysics" is a highly respected publication in the field of geophysics. Since 1952, each volume has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now in its 52nd volume, it contains much material still relevant today--truly an essential publication for researchers in all fields of geophysics.
"Physics of Condensed Matter" is designed for a two-semester graduate course on condensed matter physics for students in physics and materials science. While the book offers fundamental ideas and topic areas of condensed matter physics, it also includes many recent topics of interest on which graduate students may choose to do further research. The text can also be used as a one-semester course for advanced undergraduate majors in physics, materials science, solid state chemistry, and electrical engineering, because it offers a breadth of topics applicable to these majors. The book begins with a clear, coherent picture of simple models
of solids and properties and progresses to more advanced properties
and topics later in the book. It offers a comprehensive account of
the modern topics in condensed matter physics by including
introductory accounts of the areas of research in which intense
research is underway. The book assumes a working knowledge of
quantum mechanics, statistical mechanics, electricity and magnetism
and Green's function formalism (for the second-semester
curriculum).
"Advances in Imaging and Electron Physics " merges two long-running
serials--"Advances in Electronics and Electron Physics" and
"Advances in Optical and Electron Microscopy."
Since its inception in 1966, the series of numbered volumes known as "Semiconductors and Semimetals" has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as "Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, " and others promise that this tradition will be maintained and even expanded. Reflecting the truly interdisciplinary nature of the field that the series covers, the volumes in "Semiconductors and Semimetals" have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in modern industry.
This work presents one of the most powerful methods of plasma
diagnosis in exquisite detail, to guide researchers in the theory
and measurement techniques of light scattering in plasmas. Light
scattering in plasmas is essential in the research and development
of fusion energy, environmental solutions, and electronics.
"Introductory Statistical Thermodynamics" is a text for an introductory one-semester course in statistical thermodynamics for upper-level undergraduate and graduate students in physics and engineering. The book offers a high level of detail in derivations of all equations and results. This information is necessary for students to grasp difficult concepts in physics that are needed to move on to higher level courses. The text is elementary, self contained, and mathematically well-founded, containing a number of problems with detailed solutions to help students to grasp the more difficult theoretical concepts. Beginning chapters place an emphasis on quantum mechanics
"Advances in Imaging and Electron Physics " merges two long-running
serials--"Advances in Electronics and Electron Physics" and
"Advances in Optical and Electron Microscopy."
This book presents an approach to the design and fabrication of
optical elements that are based on the use of one- or
two-dimensional randomly rough surfaces to reflect or transmit
light in specified ways. The reader is provided with an
introduction to analytical methods for the solution of direct
problems in rough surface scattering, and fabrication techniques.
These can be useful in contexts outside the scope of this book. The
advantages and disadvantages of this stochastic approach compared
to the diffractive optics approach are discussed. Finally,
experimental results that verify the predictions of the theories
developed in this book are presented.
"Advances in Imaging and Electron Physics " merges two long-running
serials--"Advances in Electronics and Electron Physics" and
"Advances in Optical and Electron Microscopy."
"Advances in Imaging and Electron Physics " merges two long-running
serials--"Advances in Electronics and Electron Physics" and
"Advances in Optical and Electron Microscopy."
"Advances in Imaging and Electron Physics " merges two long-running
serials--"Advances in Electronics and Electron Physics" and
"Advances in Optical and Electron Microscopy."
Neutron Scattering from Magnetic Materials is a comprehensive
account of the present state of the art in the use of the neutron
scattering for the study of magnetic materials. The chapters have
been written by well-known researchers who are at the forefront of
this field and have contributed directly to the development of the
techniques described. Neutron scattering probes magnetic phenomena
directly. The generalized magnetic susceptibility, which can be
expressed as a function of wave vector and energy, contains all the
information there is to know about the statics and dynamics of a
magnetic system and this quantity is directly related to the
neutron scattering cross section. Polarized neutron scattering
techniques raise the sophistication of measurements to even greater
levels and gives additional information in many cases. The present
book is largely devoted to the application of polarized neutron
scattering to the study of magnetic materials. It will be of
particular interest to graduate students and researchers who plan
to investigate magnetic materials using neutron scattering.
This book sets out to explain the development of modern electronic
systems and devices from the viewpoint of the semiconductor
materials (germanium, silicon, gallium arsenide and many others)
which made them possible. It covers the scientific understanding of
these materials and its intimate relationship with their technology
and many applications. It began with Michael Faraday, took off in a
big way with the invention of the transistor at Bell Labs in 1947
and is still burgeoning today. It is a story to match any artistic
or engineering achievement of man and this is the first time it has
been presented in a style suited to the non-specialist. It is
written in a lively, non-mathematical style which brings out the
excitement of discovery and the fascinating interplay between the
demands of system pull and technological push. It also looks at the
nature of some of the personal interactions which helped to shape
the modern technological world.
Advances in Imaging and Electron Physics merges two long-running serials--Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. Updated with contributions from leading international scholars
and industry experts
New materials addressed for the first time include the chapters
on minerals by Barber et al and the chapter on dislocations in
colloidal crystals by Schall and Spaepen. Moriarty et al extend the
first principles calculations of kink configurations in bcc metals
to high pressures, including the use of flexible boundary
conditions to model dilatational effects. Rabier et al clarify the
issue of glide-shuffle slip systems in diamond cubic and related
III-V compounds. Metadislocations, discussed by Feuerbacher and
Heggen, represent a new type of defect in multicomponent metal
compounds and alloys. Dislocation core structures identified in silicon at high stress Metadislocations, a new type of defect, identified and described Extension of dislocation concepts to complex minerals First observations of dislocations in colloidal crystals |
You may like...
Advances in Atomic, Molecular, and…
Ennio Arimondo, Paul R. Berman, …
Hardcover
R4,828
Discovery Miles 48 280
Advances in Atomic, Molecular, and…
Paul R. Berman, Chun C. Lin, …
Hardcover
R5,163
Discovery Miles 51 630
Quantum Efficiency in Complex Systems…
Uli Wurfel, Michael Thorwart, …
Hardcover
R5,571
Discovery Miles 55 710
Advances in Semiconductor Lasers, Volume…
James J Coleman, A. Catrina Bryce, …
Hardcover
R5,286
Discovery Miles 52 860
|