![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > States of matter > Plasma physics
The present review book by Prof., Dr. Lev I. Dorman, Plasmas and Energetic Processes in Geomagnetosphere reflects the development of the geomagnetospheres research and applications for the last few decades. The importance and actuality of geomagnetosphere research are based on the following three factors: 1. The geomagnetosphere is the nearest giant natural laboratory, where it is possible via satellites and ground measurements to investigate in detail many different plasmas and energetic processes in space, which are caused by an interaction of high kinetic energy solar wind plasmas and its perturbations (Interplanetary Coronal Mass Ejections - ICMEs, Interplanetary Shock Waves ISWs, Interplanetary Interaction Regions IIR), including those frozen in the Interplanetary Magnetic Fields (IMF) with the rotated main geomagnetic field. This interaction leads to the dynamic transformation of magnetic fields in the geomagnetosphere, generation and trapping of high energy particles (which are known as Magnetospheric Cosmic Rays MCR), and the generation of many types of instabilities and electromagnetic radiations. These processes are in principle similar to processes in magnetospheres of other planets and their moons, in the atmosphere of the sun and other stars, in interplanetary and in interstellar space, and in many different astrophysical objects. This research is an important basis for fundamental space and astrophysical science. 2. Today, technology, economics, navigation, TV, Internet, radio connections, military aspects, and the life of people on our planet are strongly connected to the work of many satellites moving inside the geomagnetosphere. Different processes and MCR in the geomagnetosphere influence the satellites work and often lead to satellite malfunctions up to fully destroying their electronics; satellites essentially die in these cases. The described research can be considered as a basis for developing methods of forecasting dangerous situations for satellites in different orbits and to decrease the risk of satellite malfunctions and loss. 3. The interaction of ICME, ISW, and IIR with the geomagnetosphere leads to the generation of big magnetic storms accompanied with a Forbush decrease and precursory effects in Galactic Cosmic Ray (GCR) intensity. These magnetic storms are dangerous not only to satellites, but also to the Earths surface in terms of technology, radio connections, car accidents, and human health (e.g., increasing the frequency of infarct myocardial and brain strokes). Investigations of causes of magnetic storms can help to develop methods of forecasting and decreasing the level of magnetic storm hazards. Therefore, the other practical application of this research is connected with the problem of space weather and space climate influence on the technology, radio connections, navigation, transportation, and peoples health on the Earth, which is independent of altitude and geomagnetic latitude.
Plasma is one of the four fundamental states of matter; the other three being solid, liquid and gas. Several components, such as molecular clouds, diffuse interstellar gas, the solar atmosphere, the Earth's ionosphere and laboratory plasmas, including fusion plasmas, constitute the partially ionized plasmas. This book discusses different aspects of partially ionized plasmas including multi-fluid description, equilibrium and types of waves. The discussion goes on to cover the reionization phase of the universe, along with a brief description of high discharge plasmas, tokomak plasmas and laser plasmas. Various elastic and inelastic collisions amongst the three particle species are also presented. In addition, the author demonstrates the novelty of partially ionized plasmas using many examples; for instance, in partially ionized plasma the magnetic induction is subjected to the ambipolar diffusion and the Hall effect, as well as the usual resistive dissipation. Also included is an observation of kinematic dynamo in partially ionized plasmas.
Applications of microscale and nanoscale thermal and fluid transport phenomena involved in traditional industries and highly specialised fields such as bioengineering, micro-fabricated fluidic systems, microelectronics, aerospace technology, micro heat pipes, chips cooling etc. have been becoming especially important since the late 20th century. However, microscale and nanoscale thermal and fluid transport phenomena are quite different from those of conventional scale or macroscale. Quite a few studies have been conducted to understand the very complex phenomena involved at microscale and nanoscale. New methods have been applied to measure the basic physical parameters at microscale and are continuously under development. New prediction methods have also been developed to cover both macroscale and microscale channels and are being continuously under investigation. New theories and mechanisms are also urgently needed for the fluid flow and heat transfer phenomena at microscale and nanoscale. There are many issues to be clarified from both theoretical and applied aspects in the microscale and nanoscale thermal and fluid transport phenomena. Furthermore, Interdisciplinary research areas are also rapidly under development. For example, as a new research frontier of nanotechnology, the research of nanofluid two-phase flow and thermal physics is rapidly growing, however, it has also posed new challenges as there are quite contradictory results in the available research.
Cosmic rays are energetic particles originated from sources outside the Earth. Recently, there is a growing interest in studying the relationship between cosmic rays and climate, particularly under the context of global warming. This book provides a concise introduction on the topics at a level appropriate to graduate students and researchers. In this book, plasma physics, solar physics, cosmic rays physics as well as atmospheric physics are introduced. The historical relationship between the solar activity and climate as well as the recently observed relationship between cosmic rays and cloud formation are presented. The meteorological effects on cosmic rays and the measurements of atmospheric temperature profile by cosmic rays with its potential application to weather forecasting are discussed.
This book contains the Proceedings of the 25th International Free Electron Laser Conference and the 10th Free Electron Laser Users Workshop, which were held on September 8-12, 2003 in Tsukuba, Ibaraki in Japan.
Proceedings of the Fourteenth Yugoslav Summer School and International Symposium on title] (SPIG 88) held at Sarajevo, August 1988. 139 papers emphasize atomic collision processes, particle and laser beam interaction with solids, and low temperature plasmas and general plasma theory. Acidic paper.
A stream flowing in alluvium deforms its bed surface, forming ripples, dunes, bars, etc., and, in many instances, it deforms its channel entirely, thereby creating meandering or braiding patterns. It could be said that, in general, an alluvial stream and its deformable boundary undergo a variety of fluvial processes leading to the emergence of a multitude of alluvial forms. This book concerns the physics and analytical treatment of various fluvial processes and the associated alluvial bed and plan forms listed above. Following an introductory chapter on the basics of turbulent flow and sediment transport, the book covers the origin, geometric characteristics and effects of bed forms, from small- to meso-scale (ripples, dunes, alternate and multiple bars); the initiation, geometry and mechanics of meandering streams; the computation of flow, bed deformation and the planimetric evolution of meandering streams; and braiding and delta formation. The book also covers the regime concept, the time-development of a stream towards its regime state, and the formulation of stable, or equilibrium, morphology. The book distinguishes itself by its comprehensive analysis and discussion of key processes involved in large-scale river morphodynamics. The book was written primarily for researchers and graduate students of hydraulic engineering, water resources and related branches of earth sciences, but it will also prove useful for river engineers and managers.
This book highlights the principles, research advances, and applications of plasmonic photocatalysis. As a new class of catalysts, plasmonic nanostructures with the unique ability to harvest solar energy across the entire visible spectrum and produce effective photocatalysis are viewed as a promising pathway for the energy crisis. Although plasmonic catalysis has been widely reported, the excitation mechanism and energy transfer pathway are still controversial. Meanwhile, the latest discovery of catalysis on nanomaterials is less reported. This book outlines the basics of plasmonic photocatalysis, including the electromagnetic properties of metal materials and surface plasmon, and discusses the catalytic mechanisms including the nearfield enhancements, hot electron, and thermal effects. In addition, the measurement methods and current advances on molecules and nanocrystals are presented in detail. Suitable for graduate students and researchers in physics, optics and optical engineering, and materials science, the book will deepen readers' understanding of the interaction between light and nanomaterials and expand their knowledge of the principles and applications of nanophotonics.
This book presents peer-reviewed articles from the National Workshop on Recent Advances in Condensed Matter and High Energy Physics-2021 (CMHEP-2021). This workshop was held in the Department of Physics, Ewing Christian College (ECC), Prayagraj, in collaboration with National Academic of Sciences (NASI), Prayagraj, India, in 2021. The book highlights recent theoretical and experimental developments in condensed matter and high energy physics which include novel phases of matter, namely crystalline and non-crystalline phases, unconventional superconducting phases, magnetic phases and Quark-Gluon plasma phases along with searches of neutrino and dark matter. This book provides a good resource for beginners as well as advanced researchers in the field of condensed matter and high energy physics.
This complete introduction to the use of modern ray tracing techniques in plasma physics describes the powerful mathematical methods generally applicable to vector wave equations in non-uniform media, and clearly demonstrates the application of these methods to simplify and solve important problems in plasma wave theory. Key analytical concepts are carefully introduced as needed, encouraging the development of a visual intuition for the underlying methodology, with more advanced mathematical concepts succinctly explained in the appendices, and supporting Matlab and Raycon code available online. Covering variational principles, covariant formulations, caustics, tunnelling, mode conversion, weak dissipation, wave emission from coherent sources, incoherent wave fields, and collective wave absorption and emission, all within an accessible framework using standard plasma physics notation, this is an invaluable resource for graduate students and researchers in plasma physics.
The first part of this monograph presents theoretical analysis of the thermophysical properties of strongly coupled coulomb systems. A new model is then developed, making it possible to calculate the full set of low temperature, multicomponent, nonideal plasma transport coefficients, based on the kinetic coefficients of strongly coupled coulomb systems and experimental data for the transport coefficients of Dense, Low temperature plasmas. This model can easily be implemented in the form of a set of computer algorithms, and the third part of the book shows how it can be used to solve important problems of high temperature gas dynamics, for example, heat and mass transfer in the shock layer of a space probe, stability of temperature and concentration fields in gas phase nuclear reactors, and critical phenomena in low temperature plasma dynamics.
Updated and expanded from the original Japanese edition,
Laser-Aided Diagnostics of Gases and Plasmas takes a unique
approach in treating laser-aided diagnostics. The book unifies the
subject by joining applications instead of describing each
application as a totally separate system. In taking this approach,
it highlights the relative strengths of each method and shows how
they can complement each other in the study of gases and plasmas.
Providing a systematic and self-contained treatment of excitation,
propagation and re- emission of electromagnetic waves guided by
density ducts in magnetized plasmas, this book describes in detail
the theoretical basis of the electrodynamics of ducts. The
classical dielectric-waveguide theory in open guiding systems in
magnetoplasma is subjected to rigorous generalization. The authors
emphasize the conceptual physical and mathematical aspects of the
theory, while demonstrating its applications to problems
encountered in actual practice.
This book is a collection of invited papers (previously published
in special issues of the Journal of Adhesion Science and
Technology) written by internationally recognized researchers
actively working in the field of plasma surface modification. It
provides a current, comprehensive overview of the plasma treatment
of polymers.
One dimensional electronic materials are expected to be key components owing to their potential applications in nanoscale electronics, optics, energy storage, and biology. Besides, compound semiconductors have been greatly developed as epitaxial growth crystal materials. Molecular beam and metalorganic vapor phase epitaxy approaches are representative techniques achieving 0D-2D quantum well, wire, and dot semiconductor III-V heterostructures with precise structural accuracy with atomic resolution. Based on the background of those epitaxial techniques, high-quality, single-crystalline III-V heterostructures have been achieved. III-V Nanowires have been proposed for the next generation of nanoscale optical and electrical devices such as nanowire light emitting diodes, lasers, photovoltaics, and transistors. Key issues for the realization of those devices involve the superior mobility and optical properties of III-V materials (i.e., nitride-, phosphide-, and arsenide-related heterostructure systems). Further, the developed epitaxial growth technique enables electronic carrier control through the formation of quantum structures and precise doping, which can be introduced into the nanowire system. The growth can extend the functions of the material systems through the introduction of elements with large miscibility gap, or, alternatively, by the formation of hybrid heterostructures between semiconductors and another material systems. This book reviews recent progresses of such novel III-V semiconductor nanowires, covering a wide range of aspects from the epitaxial growth to the device applications. Prospects of such advanced 1D structures for nanoscience and nanotechnology are also discussed.
|
You may like...
Introduction to the Kinetics of Glow…
Chengxun Yuan, Anatoly A Kudryavtsev, …
Hardcover
R2,153
Discovery Miles 21 530
Emerging Developments and Applications…
Aamir Shahzad, Maogang He
Hardcover
R6,170
Discovery Miles 61 700
Relativistic Nonlinear Electrodynamics…
Hamlet Karo Avetissian
Hardcover
R4,933
Discovery Miles 49 330
Nonlinear Wave and Plasma Structures in…
Evgeny Mishin, Anatoly Streltsov
Paperback
R3,347
Discovery Miles 33 470
Introduction to Plasma Physics
Gerard Belmont, Laurence Rezeau, …
Hardcover
R2,586
Discovery Miles 25 860
Surface Plasmon Resonance Sensors - A…
Leiva Casemiro Oliveira, Antonio Marcus Nogueira Lima, …
Hardcover
R4,050
Discovery Miles 40 500
|