![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > States of matter > Plasma physics
This book provides the latest achievements and original research work in physics of combustion processes and application of the methods developed in combustion physics for astrophysical problems of stars burning, supernovae explosions and a confined thermonuclear fusion. All the materials in the book are presented in a concise and easily accessible way, but at the same time provides a deep physical inside in the phenomena considered. It is an effective theoretical course with the direct practical implications in engineering fields of engine's development, energy production, safety issues inherent to terrestrial combustion, as well as in thermonuclear combustion in the inertial fusion. This book is aimed at university students, Ph.D. students and engineers, as well as professionals in combustion, energy-related research, astrophysics and researchers in neighboring fields.
This book introduces the research process and principles of the controlled super-coupling nuclear fusion experiment at the Experimental Advanced Superconducting Tokamak (EAST) nuclear fusion reactor in Hefei, China. It uses straightforward language to explain how nuclear fusion can provide safe, environmentally friendly, clean, and inexhaustible energy in future. EAST is the world's first fully superconducting, non-circular cross-section tokamak nuclear fusion experimental device, independently developed by the Chinese Academy of Sciences. This book helps demonstrate China's cutting-edge scientific and technological advances to the rest of the world, helps spread the scientific spirit to people around the globe, and promotes prosperity and development. The book is intended for all non-experts who would like to learn more about nuclear energy and related technologies.
This rigorous explanation of plasmas is relevant to diverse plasma applications such as controlled fusion, astrophysical plasmas, solar physics, magnetospheric plasmas, and plasma thrusters. More thorough than previous texts, it exploits new powerful mathematical techniques to develop deeper insights into plasma behavior. After developing the basic plasma equations from first principles, the book explores single particle motion with particular attention to adiabatic invariance. The author then examines types of plasma waves and the issue of Landau damping. Magnetohydrodynamic equilibrium and stability are tackled with emphasis on the topological concepts of magnetic helicity and self-organization. Advanced topics follow, including magnetic reconnection, nonlinear waves, and the Fokker-Planck treatment of collisions. The book concludes by discussing unconventional plasmas such as non-neutral and dusty plasmas. Written for beginning graduate students and advanced undergraduates, this text emphasizes the fundamental principles that apply across many different contexts.
This book is based on a series of lectures for an Astrophysics of the Interstellar Medium (ISM) master's degree in Astrophysics and Cosmology at Padova University. From the cold molecular phase in which stars and planetary systems form, to the very hot coronal gas that surrounds galaxies and galaxy clusters, the ISM is everywhere. Studying its properties is vital for the exploration of virtually any field in astronomy and cosmology. These notes give the student a coherent and accurate mathematical and physical approach, with continuous references to the real ISM in galaxies. The book is divided into three parts. Part One introduces the equations of fluid dynamics for a system at rest and acoustic waves, and then explores the real ISM through the role of thermal conduction and viscosity, concluding with a discussion of shock waves and turbulence. In Part Two, the electromagnetic field is switched on and its role in modulating shock waves and contrasting gravity is studied. Part Three describes dust and its properties, followed by the main stellar sources of energy. The last two chapters respectively address the various components of the ISM and molecular clouds and star formation.
This book contains selected articles presented at the 19th International Conference on Global Research and Education, organized by the Francisk Skorina Gomel State University in Gomel, Belarus, Octoter 20-22, 2021. The areas of focus of the book are modern areas of physics and technology, as well as methods and materials of e-learning and online education. It covers areas as plasma physics, bioengineering, solid state physics, nanoelectronics, photonics, environmental design, compositional structures and metamaterials, robotics and metrology, computer physics, online education and e-learning.
This book is a primer on the interplay between plasma and materials in a fusion reactor, so-called plasma-materials interactions (PMIs), highlighting materials and their influence on plasma through PMI. It aims to demonstrate that a plasma-facing surface (PFS) responds actively to fusion plasma and that the clarifying nature of PFS is indispensable to understanding the influence of PFS on plasma. It describes the modern insight into PMI, namely, relevant feedback to plasma performance from plasma-facing material (PFM) on changes in a material surface by plasma power load by radiation and particles, contrary to a conventional view that unilateral influence from plasma on PFM is dominant in PMI. There are many books and reviews on PMI in the context of plasma physics, that is, how plasma or plasma confinement works in PMI. By contrast, this book features a materials aspect in PMI focusing on changes caused by heat and particle load from plasma: how PFMs are changed by plasma exposure and then, accordingly, how the changed PFM interacts with plasma.
A century ago, Lewis Fry Richardson introduced the concept of energy cascades in turbulence. Since this conceptual breakthrough, turbulence has been studied in diverse systems and our knowledge has increased considerably through theoretical, numerical, experimental and observational advances. Eddy turbulence and wave turbulence are the two regimes we can find in nature. So far, most attention has been devoted to the former regime, eddy turbulence, which is often observed in water. However, physicists are often interested in systems for which wave turbulence is relevant. This textbook deals with wave turbulence and systems composed of a sea of weak waves interacting non-linearly. After a general introduction which includes a brief history of the field, the theory of wave turbulence is introduced rigorously for surface waves. The theory is then applied to examples in hydrodynamics, plasma physics, astrophysics and cosmology, giving the reader a modern and interdisciplinary view of the subject.
This book gives an accessible overview of the 70-year history of nuclear fusion research and the vain attempts to construct an energy-generating nuclear fusion reactor. It shows that even in the most optimistic scenario nuclear fusion, despite the claims of its proponents and the billions being spent on research, will not be able to make a sizable contribution to the energy mix in this century. The important consequence is that nuclear fusion will not be a factor in combating climate change, since the race for carbon-free energy will have been won or lost long before the first nuclear fusion power station comes on line.
This book presents recent results on the modelling of space plasmas with Kappa distributions and their interpretation. Hot and dilute space plasmas most often do not reach thermal equilibrium, their dynamics being essentially conditioned by the kinetic effects of plasma particles, i.e., electrons, protons, and heavier ions. Deviations from thermal equilibrium shown by these plasma particles are often described by Kappa distributions. Although well-known, these distributions are still controversial in achieving a statistical characterization and a physical interpretation of non-equilibrium plasmas. The results of the Kappa modelling presented here mark a significant progress with respect to all these aspects and open perspectives to understanding the high-resolution data collected by the new generation of telescopes and spacecraft missions. The book is directed to the large community of plasma astrophysics, including graduate students and specialists from associated disciplines, given the palette of the proposed topics reaching from applications to the solar atmosphere and the solar wind, via linear and quasilinear modelling of multi-species plasmas and waves within, to the fundamental physics of nonequilibrium plasmas.
This textbook introduces the topic of special relativity, with a particular emphasis upon light-matter interaction and the production of light in plasma. The physics of special relativity is intuitively developed and related to the radiative processes of light. The book reviews the underlying theory of special relativity, before extending the discussion to applications frequently encountered by postgraduates and researchers in astrophysics, high power laser interactions and the users of specialized light sources, such as synchrotrons and free electron lasers. A highly pedagogical approach is adopted throughout, and numerous exercises are included within each chapter to reinforce the presentation of key concepts and applications of the material.
This text discusses the fundamental physical concepts involved in understanding charged particle and photon beams. The presentation is unified; particle dynamics in linear and circular accelerators are discussed in common language, as are the evolution of particle and laser beams. This book is aimed at the advanced undergraduate student, and contains numerous illustrative exercises.
This open access book serves as textbook on the physics of the radiation belts surrounding the Earth. Discovered in 1958 the famous Van Allen Radiation belts were among the first scientific discoveries of the Space Age. Throughout the following decades the belts have been under intensive investigation motivated by the risks of radiation hazards they expose to electronics and humans on spacecraft in the Earth's inner magnetosphere. This textbook teaches the field from basic theory of particles and plasmas to observations which culminated in the highly successful Van Allen Probes Mission of NASA in 2012-2019. Using numerous data examples the authors explain the relevant concepts and theoretical background of the extremely complex radiation belt region, with the emphasis on giving a comprehensive and coherent understanding of physical processes affecting the dynamics of the belts. The target audience are doctoral students and young researchers who wish to learn about the physical processes underlying the acceleration, transport and loss of the radiation belt particles in the perspective of the state-of-the-art observations.
This book introduces the traditional and novel techniques required to study the thermodynamic and transport properties of quark-gluon plasma. In particular, it reviews the construction of improved holographic models for QCD-like confining gauge theories and their applications in the physics of quark-gluon plasma. It also discusses the recent advances in the development of hydrodynamic techniques, especially those incorporating the effects of external magnetic fields on transport. The book is primarily intended for researchers and graduate students with a background in quantum field theory and particle physics but who may not be familiar with the theory of strong interactions and holographic and hydrodynamic techniques required to study said interactions.
This book includes both theoretical and practical aspects within optics, photonics and lasers. The book provides new methods, technologies, advanced prototypes, systems, tools and techniques as well as a general survey indicating future trends and directions. The main fields of this book are Optical scattering, plasmas technologies and simulation, photonic and optoelectronic sensors and devices, optical fiber sensing and monitoring, image detection and Imaging solid state lasers and fiber lasers, and optical amplifiers. A wide range of optical materials is covered, from semiconductor based optical materials, optical crystals and optical glasses.
Introduction to Plasma Physics is the standard text for an introductory lecture course on plasma physics. The text's six sections lead readers systematically and comprehensively through the fundamentals of modern plasma physics. Sections on single-particle motion, plasmas as fluids, and collisional processes in plasmas lay the groundwork for a thorough understanding of the subject. The authors take care to place the material in its historical context for a rich understanding of the ideas presented. They also emphasize the importance of medical imaging in radiotherapy, providing a logical link to more advanced works in the area. The text includes problems, tables, and illustrations as well as a thorough index and a complete list of references.
This open access book serves as a concise primer introducing the non-specialist reader to the physics of solar energetic particles (SEP). It systematically reviews the evidence for the two main mechanisms which lead to the so-called impulsive and gradual SEP events. This second edition contains two completely new chapters discussing element abundances and shock waves, reflecting new theoretical, modeling, and observational results. Existing chapters have been substantially expanded or updated with additions placed in a broader context. More specifically, the author discusses the timing of the onsets of SEPs, their longitude distributions, their high-energy spectral shapes, their correlations with other solar phenomena, as well as the all-important elemental and isotopic abundances. The book relates impulsive SEP events to magnetic reconnection in solar flares and jets. The concept of shock acceleration by scattering on self-amplified Alfven waves is introduced, as is the evidence of reacceleration of impulsive-SEP material in the seed population accessed by the shocks in gradual events. The text then develops processes of transport of ions out to an observer. Finally, a technique to determine the source plasma temperature in both impulsive and gradual events is demonstrated.The author also mentions the role of SEP events as a radiation hazard in space and briefly discusses the nature of the main particle telescope designs that have contributed to most of the SEP measurements.
Plasmonics is a highly dynamic field, and a number of researchers and scientists from other disciplines have become involved in it. This book presents the most widely employed approaches to plasmonics and the numerous applications associated with it. There are several underlying elements in plasmonics research. Advances in nanoscience and nanotechnology have made possible the fabrication of plasmonic nanostructures, deposition of thin films, and development of highly sensitive optical characterization techniques. The different approaches to nanostructuring metals have led to a wealth of interesting optical properties and functionality via manipulation of the plasmon modes that such structures support. The sensitivity of plasmonic structures to the changes in their local dielectric environment has led to the development of new sensing strategies and systems for chemical analysis and identification. The book discusses all of these aspects.
This book explores novel computational strategies for simulating excess energy dissipation alongside transient structural changes in photoexcited molecules, and accompanying solvent rearrangements. It also demonstrates in detail the synergy between theoretical modelling and ultrafast experiments in unravelling various aspects of the reaction dynamics of solvated photocatalytic metal complexes. Transition metal complexes play an important role as photocatalysts in solar energy conversion, and the rational design of metal-based photocatalytic systems with improved efficiency hinges on the fundamental understanding of the mechanisms behind light-induced chemical reactions in solution. Theory and atomistic modelling hold the key to uncovering these ultrafast processes. Linking atomistic simulations and modern X-ray scattering experiments with femtosecond time resolution, the book highlights previously unexplored dynamical changes in molecules, and discusses the development of theoretical and computational frameworks capable of interpreting the underlying ultrafast phenomena.
This dissertation covers several important aspects of relativistically intense laser-microplasma interactions and some potential applications. A Paul-trap based target system was developed to provide fully isolated, well defined and well positioned micro-sphere-targets for experiments with focused peta-watt laser pulses. The laser interaction turned such targets into microplasmas, emitting proton beams with kinetic energies exceeding 10 MeV. The proton beam kinetic energy spectrum and spatial distribution were tuned by variation of the acceleration mechanism, reaching from broadly distributed spectra in relatively cold plasma expansions to spectra with relative energy spread as small as 20% in spherical multi-species Coulomb explosions and in directed acceleration processes. Numerical simulations and analytical calculations support these experimental findings and show how microplasmas may be used to engineer laser-driven proton sources. In a second effort, tungsten micro-needle-targets were used at a peta-watt laser to produce few-keV x-rays and 10-MeV-level proton beams simultaneously, both measured to have only few-m effective source-size. This source was used to demonstrate single-shot simultaneous radiographic imaging with x-rays and protons of biological and technological samples. Finally, the dissertation discusses future perspectives and directions for laser-microplasma interactions including non-spherical target shapes, as well as thoughts on experimental techniques and advanced quantitative image evaluation for the laser driven radiography.
This book addresses the peculiarities of nonlinear wave propagation in waveguides and explains how the stratification depends on the waveguide and confinement. An example of this is an optical fibre that does not allow light to pass through a density jump. The book also discusses propagation in the nonlinear regime, which is characterized by a specific waveform and amplitude, to demonstrate so-called solitonic behaviour. In this case, a wave may be strongly localized, and propagates with a weak change in shape. In the waveguide case there are additional contributions of dispersion originating from boundary or asymptotic conditions. Offering concrete guidance on solving application problems, this essentially (more than twice) expanded second edition includes various aspects of guided propagation of nonlinear waves as well as new topics like solitonic behaviour of one-mode and multi-mode excitation and propagation and plasma waveguides, propagation peculiarities of electromagnetic waves in metamaterials, new types of dispersion, dissipation, electromagnetic waveguides, planetary waves and plasma waves interaction.The key feature of the solitonic behaviour is based on Coupled KdV and Coupled NS systems. The systems are derived in this book and solved numerically with the proof of stability and convergence. The domain wall dynamics of ferromagnetic microwaveguides and Bloch waves in nano-waveguides are also included with some problems of magnetic momentum and charge transport.
Turbulence in plasma surface interaction holds crucial uncertainties for its impact on material erosion in the operation of fusion reactors. In this thesis, the design, development and operation of a Thomson scattering diagnostic and its novel implementation with fast visual imaging created a versatile tool to investigate intermittently occuring plasma oscillations. Specifically, ballistic transport events in the plasma edge, constituting turbulent transport, have been targeted in this thesis. With the help of a custom photon counting algorithm, the conditional averaging technique was applied on Thomson scattering for the first time to allow spatial and pseudo-time-resolved measurements. Since plasma turbulence and the emerging transport phenomena are comparable in most magnetized devices, the diagnostic development and the results from the linear plasma device PSI-2 are useful for an implementation of similar techniques in larger fusion experiments. Furthermore, the obtained results indicate a strong enhancement of erosion with turbulent transport and thus underline the importance of dedicated experiments investigating plasma turbulence in the framework of erosion in future fusion reactors.
The present research studies the fundamental physics occurring during the magnetic flux and magnetized plasma compression by plasma implosion. This subject is relevant to numerous studies in laboratory and space plasmas. Recently, it has attracted particular interest due to the advances in producing high-energy-density plasmas in fusion-oriented experiments, based on the approach of magnetized plasma compression. The studied configuration consists of a cylindrical gas-puff shell with pre-embedded axial magnetic field that pre-fills the anode-cathode gap. Subsequently, axial pulsed current is driven through the plasma generating an azimuthal magnetic field that compresses the plasma and the axial magnetic field embedded in it. A key parameter for the understanding of the physics occurring during the magnetized plasma compression is the evolution and distribution of the axial and azimuthal magnetic fields. Here, for the first time ever, both fields are measured simultaneously employing non-invasive spectroscopic methods that are based on the polarization properties of the Zeeman effect. These measurements reveal unexpected results of the current distribution and the nature of the equilibrium between the axial and azimuthal fields. These observations show that a large part of the current does not flow in the imploding plasma, rather it flows through a low-density plasma residing at large radii. The development of a force-free current configuration is suggested to explain this phenomenon. Previously unpredicted observations in higher-power imploding-magnetized-plasma experiments, including recent unexplained structures observed in the Magnetized Liner Inertial Fusion experiment, may be connected to the present discovery.
This significantly extended second edition addresses the important physical phenomenon of Surface Plasmon Resonance (SPR) or Surface Plasmon Polaritons (SPP) in thin metal films, a phenomenon which is exploited in the design of a large variety of physico-chemical optical sensors. In this treatment, crucial materials aspects for design and optimization of SPR sensors are investigated and described in detail. The text covers a selection of nanometer thin metal films, ranging from free-electron to the platinum-type conductors, along with their combination with a large variety of dielectric substrate materials, and associated individual layer and opto-geometric arrangements. Whereas the first edition treated solely the metal-liquid interface, the SP-resonance conditions considered here are expanded to cover the metal-gas interface in the angular and wavelength interrogation modes, localized and long-range SP's and the influence of native oxidic ad-layers in the case of non-noble metals. Furthermore, a selection of metal grating structures that allow SP excitation is presented, as are features of radiative SP's. Finally, this treatise includes as-yet hardly explored SPR features of selected metal-metal and metal-dielectric superlattices. An in-depth multilayer Fresnel evaluation provides the mathematical tool for this optical analysis, which otherwise relies solely on experimentally determined electro-optical materials parameters.
Written to appeal to a wide field of engineers and scientists who work on multiscale and multiphysics analysis, Multiphysics and Multiscale Modeling: Techniques and Applications is dedicated to the many computational techniques and methods used to develop man-made systems as well as understand living systems that exist in nature. Presenting a body of research on multiscale and multiphysics analysis collected by the author over the years, this book provides an assessment of multiple computational techniques that include the finite element method, lattice Boltzmann method, cellular automata, and the molecular dynamics technique. The author also presents a number of example problems relevant to multiphysics and multiscale analyses, and introduces the proper coupling techniques that can be used in conjunction with computational methods to solve a multitude of multiscale and multiphysics problems. In addition, this detailed book: Provides a simplified analysis for crystalline structures using the finite element method and molecular dynamics Discusses multiscale analysis of biomaterials using human bones as an example Presents multiphysics problems for composite structures Includes fluidstructure interaction for composite structures surrounded by water Contains an example of the multiphysics analysis of electromechanical problems Introduces a multiphysics analysis of biomechanics using the example of blood vessels (for which there is fluid-structure interaction) Multiphysics and Multiscale Modeling: Techniques and Applications emphasizes the use of multiphysics and multiscale techniques to aid in the understanding and development of complex physical behaviors and systems. This book serves as a resource in mechanical engineering, bioengineering, and materials engineering study, practice, and research.
This volume presents a selection of articles based on inspiring lectures held at the "Capri" Advanced Summer School, an original event conceived and promoted by Leonida Antonio Gizzi and Ralph Assmann that focuses on novel schemes for plasma-based particle acceleration and radiation sources, and which brings together researchers from the conventional accelerator community and from the high-intensity laser-matter interaction research fields. Training in these fields is highly relevant for ultra-intense lasers and applications, which have enjoyed dramatic growth following the development of major European infrastructures like the Extreme Light Infrastructure (ELI) and the EuPRAXIA project. The articles preserve the tutorial character of the lectures and reflect the latest advances in their respective fields. The volume is mainly intended for PhD students and young researchers getting started in this area, but also for scientists from other fields who are interested in the latest developments. The content will also appeal to radiobiologists and medical physicists, as it includes contributions on potential applications of laser-based particle accelerators. |
![]() ![]() You may like...
Ionic Liquids and Their Application in…
Jamal Akhter Siddique, Akil Ahmad, …
Paperback
R4,694
Discovery Miles 46 940
Responsive Nanomaterials for Sustainable…
Ziqi Sun, Ting Liao
Hardcover
R4,384
Discovery Miles 43 840
|