![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Plastics & polymers technology
This book gathers the proceedings of the International Symposium on Plastics Technology, which was held on March 10, 2020 in Aachen, Germany, and was organised by the Institute for Plastics Processing (IKV) in Industry and Craft at RWTH Aachen University. Peer-reviewed by an international scientific committee, the conference proceedings comprise the papers presented by the international speakers. Topics covered include - circular economy- extrusion- lightweight technologies- simulation and digitisation - injection moulding- hybrid materials and additive manufacturing. In these fields, key themes for plastics technologies have been identified that will shape the face of research and industry for the next decade. In their contributions, the authors present the latest scientific findings, and discuss topical issues in plastics technologies. The symposium offered an inspiring forum for the exchange on research and innovation, for discussing urgent questions and providing impulses for the future of plastics technology.
Derived from the fourth edition of the well-known Plastics Technology Handbook, Plastics Fabrication and Recycling presents the molding and fabrication processes of plastics as well as several important features of plastics recycling. The book begins with a discussion of different types of molds and dies, including compression molding, injection molding, blow molding, thermoforming, reaction injection molding, extrusion, and pultrusion. It then covers spinning, casting, reinforcing, foaming, compounding, and coating processes as well as powder molding, adhesive bonding, and plastics welding techniques. The authors also explore the decoration of plastics, including painting operations, printing processes, hot stamping, in-mold decorating, embossing, electroplating, and vacuum metallizing. They conclude with an overview on key aspects of plastics recycling, developments in the field, and waste recycling problems.
Handbook of Biodegradable Polymers, the seventh volume in the Drug Delivery and Targeting book series, provides a source manual for synthetic procedures, properties and applications of bioerodible polymers. The authors describe widely available materials such as polyactides, collagen and gelatin, as well as polymers of emerging importance, such as the genetically-engineered and elastin-based polymers which are either proprietary or in early stages of development. Section I addresses synthetic absorbable polymers, and Section 2 profiles natural, semi-synthetic and biosynthetic polymers. Section 3 discusses the surface characterization of degradable polymers, the modeling of biodegradation and non-medical polymers. This book is ideal for researchers from academia and industry as well as chemists, pharmacists and physicians who deal with biopolymers, drug delivery and targeting, bioengineering and implantable devices.
Written by a chemical physicist specializing in macromolecular physics, this book brings to life the definitive work of celebrated scientists who combined multidisciplinary perspectives to pioneer the field of polymer science. The author relates firsthand the unique environment that fostered the experimental breakthroughs underlying some of today's most widely accepted theories, mathematical principles, and models for characterizing macromolecules. Physical Chemistry of Macromolecules employs the unifying principles of physical chemistry to define the behavior, structure, and intermolecular properties of macromolecules in both solution and bulk states. The text explains the experimental techniques, such as light scattering, and results used to support current theories. Examining both equilibrium and transport properties, the book describes the properties of dilute, semi-dilute, and concentrated polymer solutions, including compressible fluids. It then covers amorphous liquids and glasses, and polymer networks. The final chapters discuss the properties of solutions containing stiff-chain molecules and polyelectrolytes. Topics also include the macromolecular nature of rubber elasticity, viscoelasticity, and the distribution of relaxation times associated with the glass transition. By explaining the experimental and mathematical basis for the theories and models used to define macromolecular behavior, Physical Chemistry of Macromolecules demonstrates how these techniques and models can be applied to analyze and predict the properties of new polymeric materials.
The safe disposal and reuse of industrial and consumer rubber waste continues to pose a serious threat to environmental safety and health, despite the fact that the technology now exits for its effective recycling and reuse. Mountains of used tires confirm the belief that chemically crosslinked rubber is one of the most difficult materials to recycle. That coupled with a long history of failed attempts to create quality products from crumb rubber has resulted in such a resistance to new ideas concerning rubber recycling that very little literature on the subject has even seen the light of day. Rubber Recycling is one of those rare books that has the potential to directly impact our ecological well-being. The editors of this important volume have filled a void in technological responsibility by bringing together a group of international experts who, using substantial research evidence, prove that the utilization of recycled rubber is not just desirable, but is also quite feasible and profitable. This text provides a thorough overview of the fundamentals of rubber and the challenges of recycling. However, the heart of the book lies in its detailed explanation of the various processes currently available to breakdown, recycle, and reuse crosslinked rubber. These include -- Unconventional polymer recycling High-pressure, high-temperature sintering Ultrasonic and non ultrasonic devulcanization The use of tire particles as replacement aggregates for low-strength concrete material The utilization of powdered rubber waste in the production of rubber compounds The future potential for recycling waste rubber by blending it with waste plastics Never forgetting that these technologies are meaningless without industry participation, the book concludes with a highly practical discussion on how present market demands can be met with recycled rubber.
This history of the government-funded synthetic rubber research program (1942-19 6) offers a rare analysis of a cooperative research program geared to the improvement of existing products and the creation of new ones. The founders of the program believed the best way to further research in the new field was through collaboration among corporations, universities, and the federal government. Morris concludes that, in fact, the effort was ultimately a failure and that vigorous competition proves the best way to stimulate innovation. Government programs, like the rubber research program, are far better at improving existing products, the author contends, than creating wholly new ones.
An Overview for the General Reader The fact that silicone rubber boots made those footprints on the moon, and that other silicone polymers made possible the construc tion and functioning of space suits and space vehicles, has led to the general belief that silicones are very modem materials conjured up to meet the needs of space travel. Actually, though, silicone chemis try has deep roots in human history, dating from the dawn of the race and extending through all of geology, mineralogy, and the ancient ceramic arts. This little book seeks to put the development of silicone materials in perspective as part of the fascinating involvement of the element silicon in our daily lives, from the stuff the earth and the moon are made of to the modem use of ultra pure silicon in transistors and computers, and the use of ordi nary elementary silicon to make silicone rubber, silicone oil, sili cone resins, and silicon or silicone-containing polishes, drugs, and fragrances. Of course these are not our only connections with silicon. The natural compounds of silicon and oxygen (the silicates) are the starting materials for making bricks, tile, cement, glass, and a host of modem ceramic products. The widespread usefulness of silicon and its compounds comes about for two reasons: first, there is so much of it, and second, it is so versatile.
This valuable new book offers a new perspective on dendrimers that bridges the gap between basic research and applied nanomedicine. It explores the ultimate effectiveness of dendrimers in theranostics, a promising field that combines therapeutics and diagnostics into single multifunctional formulations used to affect therapy or treatment of a disease state. The authors examine the potential uses of dendrimers, which have proven their capabilities in local/systemic drug delivery, physical stabilization of the drug, solubility enhancement of the poorly soluble drugs, and gene delivery.
The Fourth Edition of the Handbook of Conducting Polymers, Two-Volume Set continues to be the definitive resource on the topic of conducting polymers. Completely updated with an extensive list of authors that draws on past and new contributors, the book takes into account the significant developments both in fundamental understanding and applications since publication of the previous edition. One of two volumes comprising the comprehensive Handbook, Conjugated Polymers: Perspective, Theory, and New Materials features new chapters on the fundamental theory and new materials involved in conducting polymers. It discusses the history of physics and chemistry of these materials and the theory behind them. Finally, it details polymer and materials chemistry including such topics as conjugated block copolymers, metal-containing conjugated polymers, and continuous flow processing. Aimed at researchers, advanced students, and industry professionals working in materials science and engineering, this book covers fundamentals, recent progress, and new materials involved in conducting polymers and includes a wide-ranging listing of comprehensive chapters authored by an international team of experts.
The methodology of analytical pyrolysis-GC/MS has been known for several years, but is seldom used in research laboratories and process control in the chemical industry. This is due to the relative difficulty of interpreting the identified pyrolysis products as well as the variety of them. This book contains full identification of several classes of polymers/copolymers and biopolymers that can be very helpful to the user. In addition, the practical applications can encourage analytical chemists and engineers to use the techniques explored in this volume.The structure and the functions of various types of pyrolyzers and the results of the pyrolysis-gas chromatographic-mass spectrometric identification of synthetic polymers/copolymers and biopolymers at 700 DegreesC are described. Practical applications of these techniques are also included, detailing the analysis of microplastics, failure analysis in the automotive industry and solutions for technological problems.
Now in its 6th edition, Industrial Plastics: Theory and Applications is back, with the extensive, detailed graphics and practical lab exercises that made previous editions so popular. In this latest edition, these trademark features accompany updated coverage of the plastics industry, offering the very latest information on state-of-the art equipment, with a special emphasis on processing techniques. Coverage includes plastics recycling, ISO and ASTM testing specifications, current health and safety standards, as well as examinations of current environmental issues like recycling, pollution, and incineration. With such broad coverage alongside hands-on activities to provide a clear link between theory and practice, Industrial Plastics continues to be an invaluable resource for students and professionals alike.
This book focuses on the recent trends in micro- and nano-structured polymer systems, particularly natural polymers, biopolymers, biomaterials, and their composites, blends, and IPNs. This valuable volume covers the occurrence, synthesis, isolation, production, properties and applications, modification, as well as the relevant analysis techniques to reveal the structures and properties of polymer systems. Biobased polymer blends and composites occupy a unique position in the dynamic world of new biomaterials. The growing need for lubricious coatings and surfaces in medical devices-an outcome of the move from invasive to noninvasive medicines and procedures-is playing a major role in the advancement of biomaterials technology. Natural polymers have attained their cutting-edge technology through various platforms, and this book presents a multitude of information about them. Topics include biopolymer-synthetic systems, nanomaterial-polymer structures, multi-characterization techniques, polymer blends and composites, polymer gels and polyelectrolytes, and many other interesting aspects of interests to researchers. This book will be valuable to scientists, physicians, pharmacists, engineers, and other specialists in a variety of disciplines, both academic and industrial.
This book presents some fascinating phenomena associated with the remarkable features of high performance polymers and also provides an update on applications of modern polymers. It offers new research on structure-property relationships, synthesis and purification, and potential applications of high performance polymers. The collection of topics in this book reflects the diversity of recent advances in modern polymers with a broad perspective that will be useful for scientists as well as for graduate students and engineers. The book opens with a presentation of classical models, moving on to increasingly more complex quantum mechanical and dynamical theories. Coverage and examples are drawn from modern polymers. Topics include high performance polymers and computer science integration in biochemical, green polymers, molecular nanotechnology, and industrial chemistry.
Scientific and Commercial Information for More Than 1,000 Polymers Polymers: A Property Database, Second Edition offers a central and reliable source for scientific and commercial information on more than 1,000 polymers. Revised and updated throughout, this edition features 25% new material, including 50 entirely new entries that reflect advances in areas such as conducting polymers, hydrogels, nano-polymers, and biomaterials. The second edition also comes with unlimited access to a complete, fully searchable Web version of the reference. Powerful retrieval software allows users to customize their searches and refine results. Each entry includes trade names, properties, manufacturing processes, commercial applications, supplier details, references, and links to constituent monomers. Buy the latest print edition and gain access to a complete, fully searchable Web version of the reference, enhanced with powerful retrieval software that allows you to customize searches and refine results. Unlimited access to the Online Version for the lifetime of the Second Edition Revised, Updated, and Expanded with 25% New Material Includes 50 entirely new entries reflecting the latest polymer advances Special Introductory Price! Buy today and SAVE! Purchase the NEW Edition in Print AND Online -For One Price!
Additives are selected depending on the type of polymers to which they will be added or the application for which they will be used. The appropriate selection of additives helps develop value-added plastics with improved durability as well as other advantages. This research book provides a range of modern techniques and new research on the use of additives in a variety of applications. The methods and instrumentation described represent modern analytical techniques useful to researchers, product development specialists, and quality control experts in polymer synthesis and manufacturing. Engineers, polymer scientists, and technicians will find this volume useful in selecting approaches and techniques applicable to characterizing molecular, compositional, rheological, and thermodynamic properties of elastomers and plastics. The informative chapters are the work of researchers at the Department of Polymers and Composite Materials at the prestigious Semenov Institute of Chemical Physics of Russian Academy of Sciences.
The articles collected in this publication have previously been published in eight special issues of the Journal of Biomaterials Science, Polymer Edition, in honour of Dr. Allan S. Hoffman, who is known as a pioneer, a leader and a mentor in the field of biomaterials. The papers from renowned scientists from all parts of the world, representing the state-of-the-art in polymeric biomaterials today, have been rearranged into a logical order of sections, each having a distinct focus. The topics covered are: Surface Modification, Characterization and Properties; Protein Adsorption; Blood Interactions; Cell Interactions; Immobilized Cell Receptor Ligands and Immobilized Cells; Immobilized Biomolecules and Synthetic Derivatives of Biomolecules; New Polymers and Applications; Biodegradable Polymers and Drug Delivery; Water-Soluble Biomolecules, Sunthetic Polymers, and their Conjugates; Hydrogels.
In the quest for innovative drug delivery systems attempting to meet the unmet needs in pharmaceutical space, research has taken a much more complicated path that poses a significant challenge for translation. Despite the progress made with novel materials, polyesters still remain at the helm of drug delivery technologies. This book provides a single source of reference of polyester drug delivery systems that covers a broad spectrum of materials design, manufacturing techniques, and applications.
The aim of this new compendium is to provide a solid understanding of the recent developments in advanced polymeric materials from macro- to nano-length scales. Composites are becoming more important because they can help to improve our quality of life, such as being put into service in flight vehicles, automobiles, boats, pipelines, buildings, roads, bridges, and dozens of other products, including medical products. The chapters cover a multitude of important advances, including explanations of the significance of the new fillers, like graphene and carbon nanotubes, in different matrix systems. Coverage of the application of these materials in biological and others fields also makes this book unique. Topics include advances on the processing, properties, recyclability, and reparability, and applications for polymer matrix composites, ceramic matrix composites, carbon matrix composites, wood-based composites, biocomposites, ecocomposites, nanocomposites, and more.
Filling a gap in the market, this textbook provides a concise, yet thorough introduction to polymer science for advanced engineering students and practitioners, focusing on the chemical, physical and materials science aspects that are most relevant for engineering applications. After covering polymer synthesis and properties, the major section of the book is devoted to polymeric materials, such as thermoplastics and polymer composites, polymer processing such as injection molding and extrusion, and methods for large-scale polymer characterization. The text concludes with an overview of engineering plastics. The emphasis throughout is on application-relevant topics, and the author focuses on real-life, industry-relevant polymeric materials.
Liquid crystal displays were discovered in the 1960s, and today we continue to enjoy the benefits of that fundamental discovery and its translation into a wide variety of products. Like liquid crystals, polymers are unusual materials, and have similarly enjoyed a great deal of research attention because of their vast applications and uses and complex fundamental properties. The combination of liquid crystal and polymer properties produces a broad array of new effects-spanning from densely crosslinked, rigid polymer networks to weakly crosslinked elastomers-that are not simply manifestations of either native liquid crystals or polymers alone. Cross-Linked Liquid Crystalline Systems brings together liquid crystal and polymer systems and their variations. The field, much like traditional liquid crystals, is one of an interdisciplinary nature with a broad spectrum, from the very fundamental questions of nature to a myriad of practical uses. There seems to be no shortage of unusual properties and far-reaching applications in densely crossed-linked liquid crystal systems and liquid crystal elastomers. These systems provide a rich new avenue for both fundamental and applied research and continue to fascinate scientists and engineers. Specifically, this book covers: Cross-linked networks created from reactive mesogen materials Manipulation of liquid crystalline by external constraints Advances in liquid crystal display screen technology Physical and electromagnetic properties of elastomers and magnetic gels Computer simulations and theory of liquid crystal polymeric networks and elastomers Side-on nematic liquid-crystalline elastomers for artificial muscle applications Liquid crystal display technology has driven much of the fundamental research in crosslinked liquid crystalline systems. The systems' ability to enforce three-di
This book introduces the growing problem of microplastics pollution in the soil and aquatic environment and its interaction with other chemical pollutants. Further, it provides a detailed review of existing analysis techniques for characterization, separation, and quantification of microplastics including their merits and demerits with possible suggestions. Additionally, the regulatory need and actions for improving the economic and quality of plastic recycling, curbing microplastic littering, and stakeholders, researchers, and recyclers challenges are reviewed comprehensively. Priorities are identified to bridge the knowledge gaps for appropriate management of existing challenges. Features: Provides a comprehensive description of the fate and environmental impact of microplastics, along with various characterization methods Overviews the interaction of microplastics with other toxic chemicals and further their transportation in environment Explains how microplastics enter in environment and its effect on biota and human health Analyses existing analytical techniques for characterization of microplastics Describes societal awareness related to use of plastic and discarding This book focusses on graduate students, researchers in environmental engineering, ecological engineering, chemical and biological engineering, plastics and material sciences/engineering, waste management. materials science.
In a carefully crafted, multidisciplinary, skillfully focused format, Polymers for Vascular and Urogenital Applications covers attributes of polymers used for vascular, urological, and gynecological materials. It provides a brief analysis of how the use of polymers in vascular and urogenital applications has evolved in the past five decades and outlines their common and specific functional requirements. The book provides a brief description of the evolving role of a particular family of materials and presents topics in highly integrated, well-balanced, authoritatively prepared segments on materials processing and in vitro and in vivo evaluation, complete with case studies. Features Includes contributions from authors representing a diverse technical group of clinicians with strong science or engineering backgrounds and research interests Supplies a comprehensive link between polymeric biomaterials and their application Provides a brief description of the evolving role of a particular family of materials Discusses recent developments in applications and the rationale for present and future clinical significance This book not only integrates clinical needs with current and future research responses but also provides a comprehensive overview to foster future innovation. It illustrates how two important and dissimilar areas in medicine can be interrelated by shared biomaterials and explores the clinical paradigm that establishes the driving force for innovation.
Paul John Flory: A Life of Science and Friends is the first full-length treatment of the life and work of Paul John Flory, recipient of the Nobel Prize in chemistry in 1974. It presents a chronological progression of his scientific, professional, and personal achievements as recounted and written by his former students and colleagues. This book covers the span of Flory's life, including a family history and reflections on the marks he left on the lives of various individuals within the scientific community. He played a major role in the consolidation of the macromolecular paradigm in chemistry, physics, and materials science. His influence permeates virtually every aspect of polymer science. The book includes an extensive collection of personal remembrances telling the circumstances under which colleagues worked with Flory, discussing their joint work, and assessing Flory's place in polymer science, chemistry, and world science. The contributors memorialize Flory for more than his scientific and technical contributions. Several chapters are written by living friends who reflect upon his impact on their work and careers. He also played a role in human rights within the scientific community, making efforts to liberate scientists who lived and worked behind the Iron Curtain, particularly in the Soviet Union. Paul John Flory: A Life of Science and Friends illustrates an example of an individual of scientific and personal excellence. His living friends and colleagues believe his story must be told. In telling it and making it available for future generations, his closest friends and colleagues ensure his continued inspiration to people in and outside laboratories worldwide.
Polymer Brushes: Substrates, Technologies, and Properties covers various aspects of polymer brush technology, including synthesis, properties, performance, and applications. It presents both experimental details and theoretical insights to enable a better understanding of the brush system. After an overview of polymer brush systems, the book discusses methods for grafting organic brushes from the surface of clay platelets and for the covalent grafting of PNIPAm brushes. It then describes ferrocene polymer brushes, nonfouling brushes on poly(ethylene terephthalate) film surfaces, brushes formed on the inner surface of cylindrical pores, and the "zipper brush" approach. The authors examine the use of scanning electrochemical microscopy for analyzing brushes and compare surface-controlled atom transfer radical polymerization and surface-controlled single-electron transfer living radical polymerization. They also explore the application of polymer brushes in the chromatographic separations of viruses and proteins and the suppression of proteins and cell adhesions. The text concludes with a look at how polymer brushes are synthesized by surface-initiated iniferter-mediated polymerization. This book provides a one-stop reference on the various substrates and technologies used to synthesize polymer brushes. The hands-on information in the text will help readers choose the proper synthesis methods and materials for their system.
Polymer-based smart materials have become attractive in recent years due to the fact that polymers are flexible and provide many advantages compared to inorganic smart materials: they are low cost, they are easy to process, and they exhibit good performance at nano- and microscale levels. This volume focuses on a different class of polymers that are used as smart materials in the areas of biotechnology, medicine, and engineering. The volume aims to answer these questions: How do we distinguish 'smart materials'? and How do they work? The chapters lay the groundwork for assimilation and exploitation of this technological advancement. Four of the key aspects of the approach that the authors have developed throughout this book are highlighted, namely the multidisciplinary exchange of knowledge, exploration of the relationships between multiple scales and their different behaviors, understanding that material properties are dictated at the smallest scale, and, therefore, the recognition that macroscale behavior can be controlled by nanoscale design. |
You may like...
Sustainable Composites for Aerospace…
Mohammad Jawaid, Mohamed Thariq
Paperback
3D and 4D Printing of Polymer…
Kishor Kumar Sadasivuni, Kalim Deshmukh, …
Paperback
R5,549
Discovery Miles 55 490
Polymer-Based Nanoscale Materials for…
Sabu Thomas, Jesiya Susan George
Paperback
R5,071
Discovery Miles 50 710
Durability and Reliability of Medical…
Mike Jenkins, Artemis Stamboulis
Hardcover
R4,034
Discovery Miles 40 340
Recycling of Polyethylene Terephthalate…
Sabu Thomas, Ajay Vasudeo Rane, …
Hardcover
R3,977
Discovery Miles 39 770
Fundamental Biomaterials: Polymers
Sabu Thomas, Preetha Balakrishnan, …
Paperback
Resonance - Long-Lived Waves
Leonard Dobrzynski, Housni Al-Wahsh, …
Paperback
R3,925
Discovery Miles 39 250
|