Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Plastics & polymers technology
PVC Formulary, Third Edition, contains invaluable information for PVC manufacturers, processors and users. It discusses new product development and product engineering tools and the current state of the market for PVC products. This provides the reader with the critical data they need to formulate successful and durable products, and to evaluate formulations on the background of compositions used by others. Commercial types and grades, polymer forms, and physical-chemical properties of PVC are discussed in detail, with all essential information required for the decision-making process presented clearly to provide necessary data. The book contains over 600 formulations of products belonging to 23 categories that are derived from characteristic methods of production. A broad selection of formulations is used in each category to determine the essential components of formulations used in a particular method of processing, the most important parameters of successful products, troubleshooting information, and suggestions of further sources of information on the method of processing. The concept of this work and its companion book (PVC Degradation & Stabilization also published in 2020) is to provide the reader with complete information and data required to formulate successful and durable products and/or to evaluate formulations on the background of compositions used by others.
Handbook of UV Degradation and Stabilization, Third Edition, discusses different aspects of UV-related phenomena that occur when polymeric materials are exposed to UV radiation. It reviews existing literature, looking at how plants, animals and humans protect themselves against UV radiation. This review permits evaluation of mechanisms of protection against UV used by living things and potential application of these mechanisms in the protection of natural and synthetic polymeric materials. Other chapters look at more specific aspects of UV degradation and stabilization, such as specific polymers and rubbers, analytical methods used in UV stabilization, health and safety, and more. This book is an excellent companion to the Databook of UV stabilizers which has also been published recently. Both books supplement each other without repeating the same information - one contains data another theory, mechanisms of action, practical effects and implications of application.
Understanding the reactivity of monomers is crucial in creating copolymers and determining the outcome of copolymerization. Covering the fundamental aspects of polymerization, Synthesis and Applications of Copolymers explores the reactivity of monomers and reaction conditions that ensure that the newly formed polymeric materials exhibit desired properties. Referencing a wide-range of disciplines, the book provides researchers, students, and scientists with the preparation of a diverse variety of copolymers and their recent developments, with a particular focus on copolymerization, crystallization, and techniques like nanoimprinting and micropatterning.
The authors of this book examine polyethers and polyethylene glycol. The first chapter in particular gives a systematic, balanced and comprehensive summary of the main aspects of photosensitive polyethylene glycol. The second chapter is a focus on the biodegradation of polyethylene glycols (PEGs) and polyethoxylated surfactants. The third and last chapter of this book focuses on polyethylene glycol based phase change polymers for thermal energy storage applications. Life nowadays is often centered around technologies, and it is of utmost important to have the primary and secondary resources ready for present and future needs. This last chapter addresses these concerns and various procedures in which thermal energy can be stored and used.
Advanced Ceramic Coatings for Biomedical Applications covers tissue engineering, scaffolds, implant and dental application, wound healing and adhesives. The book is one of four volumes that together provide a comprehensive resource in the field of Advanced Ceramic Coatings, also including titles covering: fundamentals, manufacturing, and classification; energy applications; and emerging applications. This books will be extremely useful for academic and industrial researchers and practicing engineers who need to find reliable and up-to-date information about recent progresses and new developments in the field of advanced ceramic coatings. It will also be of value to early career scientists providing background knowledge to the field. Smart ceramic coatings containing multifunctional components are now finding application in transportation and automotive industries, in electronics, and energy sectors, in aerospace and defense, and in industrial goods and healthcare. Their wide application and stability in harsh environments are only possible due to the stability of the inorganic components used. Ceramic coatings are typically silicon nitride, chromia, hafnia, alumina, alumina-magnesia, silica, silicon carbide, titania, and zirconia-based compositions. The increased demand for these materials and their application in energy, transportation, and the automotive industry, are considered, to be the main drivers.
Handbook of Advanced Ceramic Coatings: Fundamentals, Manufacturing and Classification introduces ceramic coating materials, methods of fabrication, characterizations, the interaction between fillers, reinforcers, and environmental impact, and the functional classification of ceramic coatings. The book is one of four volumes that together provide a comprehensive resource in the field of Advanced Ceramic Coatings, also including titles covering energy, biomedical and emerging applications. These books will be extremely useful for academic and industrial researchers and practicing engineers who need to find reliable and up-to-date information about recent progresses and new developments in the field of advanced ceramic coatings. Smart ceramic coatings containing multifunctional components are now finding application in transportation and automotive industries, in electronics, and energy sectors, in aerospace and defense, and in industrial goods and healthcare. Their wide application and stability in harsh environments are only possible due to the stability of the inorganic components used. Ceramic coatings are typically silicon nitride, chromia, hafnia, alumina, alumina-magnesia, silica, silicon carbide, titania, and zirconia-based compositions. The increased demand for these materials and their application in energy, transportation, and the automotive industry, are considered, to be the main drivers.
1. Highlights recent advances in material science and armour technology 2. Provides information on computational methods for armour design 3. Discusses stress waves and penetration mechanics 4. Covers human vulnerability and reactive armour systems
Current environmental and energy concerns have led to lignin gaining increased attention in the last decade as a renewable biomass. Due to its structural and functional properties, such as antimicrobial behaviour, biodegradability, biocompatibility and ease of surface modifications, lignin-based materials have gained popularity in the biomedical field with applications ranging from tissue engineering scaffolds and wound dressing materials to drug delivery carriers. Using this book, the reader will learn about the chemistry of lignin, and the characterization, fabrication and properties of lignin-based composites with different matrices (thermosets, thermoplastics, elastomers etc.). In addition, the book illustrates how these materials are used in medical applications, covering drug delivery, wound dressing, tissue engineering, imaging, etc. Providing a neat overview of the current research for the biomaterials science community, this book is a one-stop resource for researchers and practitioners working on lignin-based biomaterials. For those active in the broader fields of materials science and biomedical engineering, this will be a useful reference and study aid.
Advanced Functional Polymers for Biomedical Applications presents novel techniques for the preparation and characterization of functionalized polymers, enabling researchers, scientists and engineers to understand and utilize their enhanced functionality in a range of cutting-edge biomedical applications.
Compostable Polymer Materials, Second Edition, deals with the environmentally important family of polymers designed to be disposed of in industrial and municipal compost facilities after their useful life. These compostable plastics undergo degradation and leave no visible, distinguishable, or toxic residue. Environmental concerns and legislative measures taken in different regions of the world make composting an increasingly attractive route for the disposal of redundant polymers. This book covers the entire spectrum of preparation, degradation, and evironmental issues related to compostable polymers. It emphasizes recent studies concerning compostability and ecotoxilogical assessment of polymer materials. It descibes the thermal behavior, including flammability properties, of compostable polymers. It also explores possible routes of compostable polymers waste disposal through an ecological lens. Finally, the book examines the economic factors at work, including price evolution over the past decade, the current market, and future perspectives. Compostable Polymer Materials is an essential resource for graduate students and scientists working in chemistry, materials science, ecology, and environmental science.
- One of very few books available to cover this subject area.
n modern polymer science a variety of polymerization methods for
the direct synthesis of polymers bearing functional groups are
known. However, there is still a large number of functional groups
that may either completely prevent polymerization or lead to side
reactions. Post-polymerization modification, also known as
polymer-analogous modification, is an alternative approach to
overcome these limitations. It is based on the polymerization of
monomers with functional groups that are inert towards the
polymerization conditions but allow a quantitative conversion in a
subsequent reaction step yielding a broad range of other functional
groups. Thus, diverse libraries of functional polymers with
identical average degrees of polymerization but variable side chain
functionality may easily be generated.
This long awaited and thoroughly updated version of the classic text (Plenum Press, 1970) explains the subject of electrochemistry in clear, straightforward language for undergraduates and mature scientists who want to understand solutions. Like its predecessor, the new text presents the electrochemistry of solutions at the molecular level. The Second Edition takes full advantage of the advances in microscopy, computing power, and industrial applications in the quarter century since the publication of the First Edition. Such new techniques include scanning-tunneling microscopy, which enables us to see atoms on electrodes; and new computers capable of molecular dynamics calculations that are used in arriving at experimental values. Chapter 10 starts with a detailed description of what happens when light strikes semi-conductor electrodes and splits water, thus providing in hydrogen a clean fuel. There have of course been revolutionary advances here since the First Edition was written. The book also discusses electrochemical methods that may provide the most economical path to many new syntheses - for example, the synthesis of the textile, nylon. The broad area of the breakdown of material in moist air, and its electrochemistry is taken up in the substantial Chapter 12. Another exciting topic covered is the evolution of energy conversion and storage which lie at the cutting edge of clean automobile development. Chapter 14 presents from a fresh perspective a discussion of electrochemical mechanisms in Biology, and Chapter 15 shows how new electrochemical approaches may potentially alleviate many environmental problems.
In today's world, bioplastics are becoming increasingly prominent owing mainly to scarcity of oil, increase in the cost of petroleum-based commodities, and growing environmental concerns with the dumping of non-biodegradable plastics in landfills. This book summarizes the field of bioplastics by illustrating how they form a unique class of research area that integrates pure and applied sciences such as chemistry, engineering and materials science, to initate solutions. Compelling science demystics this complex and often ambiguous branch of study for benefit of all those concerned with bioplastics.
Divided into two parts, this work begins with preliminary comments regarding the definition of surface phases'' and briefly describes the basics of two-dimensional crystallography, including background information about the formation and characterization of surface phases on silicon. The second half is devoted to the particular adsorbate/Si'' systems. Contains data on 300 plus surface structures formed on clean Si(111), Si(100) and Si(110) surfaces in the presence of foreign atoms at submonolayer coverages as well as without adsorbates at all. 64 adsorbates are reviewed along with preparation techniques of surface phases, models of their atomic structure and a description of surface properties and surface-related phenomena.
Provides complete and undiluted knowledge on making inorganic polymers functional. This comprehensive book reflects the state of the art in the field of inorganic polymers, based on research conducted by a number of internationally leading research groups working in this area. It covers the synthesis aspects of synthetic inorganic polymers and looks at multiple inorganic monomers as building blocks, which exhibit unprecedented electronic, redox, photo-emissive, magnetic, self-healing and catalytic properties. It also looks at the applications of inorganic polymers in areas such as optoelectronics, energy storage, industrial chemistry, and biology. Beginning with an overview of the use of smart inorganic polymers in daily life, Smart Inorganic Polymers: Synthesis, Properties and Emerging Applications in Materials and Life Sciences goes on to study the synthesis, properties, and applications of polymers incorporating different heteroelements such as boron, phosphorus, silicon, germanium, and tin. The book also examines inorganic polymers in flame-retardants, as functional materials, and in biology. An excellent addition to the polymer scientists' and synthetic chemists' toolbox Summarizes the state of the art on how to make and use functional inorganic polymers, from synthesis to applications Edited by the coordinator of a highly funded European community research program (COST action) that focuses specifically on the exploration of inorganic polymers Features contributions from top experts in the field Aimed at academics and industrial researchers in this field, Smart Inorganic Polymers: Synthesis, Properties and Emerging Applications in Materials and Life Sciences will also benefit scientists who want to get a better overview on the state-of-the-art of this rapidly advancing area.
Food Packaging: Advanced Materials, Technologies, and Innovations is a one-stop reference for packaging materials researchers working across various industries. With chapters written by leading international researchers from industry, academia, government, and private research institutions, this book offers a broad view of important developments in food packaging. Presents an extensive survey of food packaging materials and modern technologies Demonstrates the potential of various materials for use in demanding applications Discusses the use of polymers, composites, nanotechnology, hybrid materials, coatings, wood-based, and other materials in packaging Describes biodegradable packaging, antimicrobial studies, and environmental issues related to packaging materials Offers current status, trends, opportunities, and future directions Aimed at advanced students, research scholars, and professionals in food packaging development, this application-oriented book will help expand the reader's knowledge of advanced materials and their use of innovation in food packaging.
Specifically dedicated to polymer and biopolymer systems, "Polymer Adhesion, Friction, and Lubrication" guides readers to the scratch, wear, and lubrication properties of polymers and the engineering applications, from biomedical research to automotive engineering. Author Hongbo Zeng details different experimental and theoretical methods used to probe static and dynamic properties of polymer materials and biomacromolecular systems. Topics include the use of atomic force microscopy (AFM) to analyze nanotribology, polymer thin films and brushes, nanoparticles, rubber and tire technology, synovial joint lubrication, adhesion in paper products, bioMEMS, and electrorheological fluids.
No matter how far Humanity advanced in its successes the problems of health and death will always exist. However, it is possible to postpone old age and prolong life, and it is performed successfully. In ancient Rome the average age was 15-18 years. Today in Japan it reaches 77-79 years. So what can the science of polymers do in solving this problem? Do high molecular compounds (natural and artificial) possess any reserves for solving this problem? This book discusses the problems of the polymer interaction with biologically active and model media, biodegradation biodetrioration, prognosing the time of reliable exploitation of polymers for medical purposes, polymer application in surgery, etc. Also discussed is the role of kinetics in prognosis of agriculture production quality.
Provides a comprehensive introduction to the mechanical behaviour of solid polymers. Extensively revised and updated throughout, the second edition now includes new material on mechanical relaxations and anisotropy, composites modelling, non-linear viscoelasticity, yield behaviour and fracture of tough polymers. The accessible approach of the book has been retained with each chapter designed to be self contained and the theory and applications of the subject carefully introduced where appropriate. The latest developments in the field are included alongside worked examples, mathematical appendices and an extensive reference.Fully revised and updated throughout to include all the latest developments in the fieldWorked examples at the end of the chapterAn invaluable resource for students of materials science, chemistry, physics or engineering studying polymer science
Complex fluids include polymers, colloids, emulsions, forms, gels, liquid crystals, surfacants, and other materials that form flowable microstructures. These substances are important in industries producing products such as plastic packaging, paint, ketchup, and toothpaste, and are of vital use to the petroleum, microelectronics, and pharmaceutical industries. This textbook provides both an introduction to these fascinating and important substances and an up-to-date synopsis of the latest advances in understanding the relationship between their structure and flow properties.
Roberto Piazza says: Physics should be made simple enough to be amusing, but not so trivial as to spoil the fun. This is exactly the approach of this book in making the science of soft matter relevant to everyday life things such as the food we eat, the plastic we use, the concrete we build with, the cells we are made of.
Biodegradable polymers have experienced a growing interest in recent years for applications in packaging, agriculture, automotive, medicine, and other areas. One of the drivers for this development is the great quantity of synthetic plastic discarded improperly in the environment. Therefore, R&D in industry and in academic research centers, search for materials that are reprocessable and biodegradable. This unique book comprises 12 chapters written by subject specialists and is a state-of-the-art look at all types of polyethylene-based biocomposites and bionanocomposites. It includes deep discussion on the preparation, characterisation and applications of composites and nanocomposites of polyethylene-based biomaterials such as cellulose, chitin, starch, soy protein, PLA, casein, hemicellulose, PHA and bacterial cellulose.
The Atmospheric Pressure Plasma (APP) treatment for polymer surface modification has attracted much attention recently, owing to its advantages over other techniques and its ability to improve adhesion without tampering with polymer's bulk properties. Focusing on the utility of APP treatment for enhancing polymer adhesion, this book covers the latest development in this important and enabling technology, providing profound insights from many top researchers on the design and functions of various types of reactors, as well as current and potential applications of APP treatment.
Plastics are everywhere. Bags, bank cards, bottles, and even boats can all be made of this celebrated but much-maligned material. Yet most of us know next to nothing about plastics. We do know that they are practical and cheap--but they also represent a huge environmental problem, for they literally take ages to decompose. In this engaging book, E.S. Stevens tells us everything we have always wondered about plastics and of the efforts, in America, Europe, and Asia, to develop a new breed of environmentally friendly plastics. He points to a possible future where plastics will no longer be made of petroleum, but of plants. The first two chapters assess the increased use of plastics as a relatively new alternative to other materials. The third chapter introduces us to their impact on the environment and strategies for their disposal or recycling. The next two chapters cover basic concepts and terms used in polymer sciences and provide some basic chemistry. With these fundamentals in tow, the author compares how petroleum-based and biological polymers are made, and the various ways in which they decompose. He acquaints readers with the emerging technologies, their commercial viability, and their future. Finally, instructions are given for preparing basic bioplastics using readily available materials. Nonspecialists will find "Green Plastics" a concise introduction to this exciting interdisciplinary topic--an introduction otherwise not available. For students it provides easy entry to an area of science with wide appeal and current importance; for teachers, excellent background reading for courses in various sciences. The prospect of depleted fossil fuel supplies, and the potential benefits of bioplastics to the environment and to rural areas that could supply the raw materials, make this book a compelling presentation of a subject whose time has come. |
You may like...
Graphene Based Biopolymer Nanocomposites
Bhasha Sharma, Purnima Jain
Hardcover
R4,509
Discovery Miles 45 090
100+ Years of Plastics - Leo Baekeland…
E. Thomas Strom, Seth Rasmussen
Hardcover
R5,405
Discovery Miles 54 050
ZIF-8 Based Materials for Pharmaceutical…
Awais Ahmad, Muhammad Pervaiz, …
Hardcover
R4,747
Discovery Miles 47 470
|