![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Plastics & polymers technology
In order to adapt the properties of living materials to their biological functions, nature has developed unique polyelectrolytes with outstanding physical, chemical and mechanical behavior. Namely polyampholytes can be suitable substances to model protein folding phenomenon and enzymatic activity most of biological macromolecules due to the presence of acidic and basic groups. The ability of linear and crosslinked amphoteric macromolecules to adopt globular, coil, helix and stretched conformations and to demonstrate coil-globule, helix-coil phase transitions, and sol-gel, collapsed expanded volume changes in relation to internal (nature and distribution of acid and base substituents, copolymer composition, hydrophobicity etc. ) and external (pH, temperature, ionic strength of the solution, thermodynamic quality of solvents etc. ) factors is very important and constantly attracts the attention of theorists and experimentalists because the hierarchy of amphoteric macromolecules can repeat, more or less, the structural organization of proteins. That is why polyampholytes fall within eyeshot of several disciplines, at least polymer chemistry and physics, molecular biology, colloid chemistry, coordination chemistry and catalysis. The main purpose of this monograph is to bridge the gap between synthetic and natural polymers and to show a closer relationship between two fascinating worlds. The first chapter of the book acquaints the readers with synthetic strategy of "annealed," "quenched" and "zwitterionic" polyampholytes. Radical copolymerization, chemical modification and radiation-chemical polymerization methods are thoroughly considered. Kinetics and mechanism of formation of random, alternating, graft, di-block or tri-block sequences is discussed. The second chapter deals with behavior of polyampholytes in solutions."
Polymer Surfaces and Interfaces II W. J. Feast, University of Durham, Durham, UK H. S. Munro, Courtaulds Research, Coventry, UK R. W. Richards, University of Durham, Durham, UK This volume presents a collection of review papers, based on the a Polymer Surfaces and Interfaces II International Symposiuma which took place in Durham (UK), July 1991 Compiled here, the papers present an authoritative overview of current technology and research on polymer surfaces, by acknowledged experts in their specialist fields. Individual reviews cover analytical techniques, properties, reactions, modelling and synthesis of surfaces and interfaces. Polymer Surfaces and Interfaces II will be of interest to polymer scientists, surface scientists, chemists, physicists and biologists, working in industrial and academic laboratories. Reviews of the previous volume a Altogether a most useful addition to polymer sciencea ---- Physics Bulletin a The book can be unreservedly recommended to chemists and materials scientists with an interest in adhesion, biomaterials, polymer dispersions and molecular engineeringa ---- Polymer Contents Surface Chemistry of Chemically Resistant Polymers; T. G. Bee, A. J. Dias, N. L. Franchina, B. U. Kolb, K.--W. Lee, P. A. Patton, M. S. Shoichet and T. J. McCarthy Self--assembled Molecular Films as Polymer Surface Models; D. L. Allara, S. V. Atre and A. N. Parikh Non--equilibrium Effects in Polymeric Stabilization; M. E. Cates and J. T. Brooks Ion Beam Analysis of Composition Profiles near Polymer Surfaces and Interfaces; R. A. L. Jones Laser Light Scattering; J. C. Earnshaw Characterization of Interfaces in Polymers and Composites using Raman Spectroscopy; R. J. Young Surface Modification and Analysis of Ultra--high--modulus Polyethylene Fibres for Composites; G. A. George SSIMS ---- An Emeriging Technique for the Surface Chemical Analysis of Polymeric Biomaterials; M. C. Davies Scanning Probe Microscopy ---- Current Issues in the Analysis of Polymeric Biomaterials; M. C. Davies, D. E. Jackson, C. J Roberts, S. J. B. Tendler, K. M. Kreusel, M. J. Wilkins and P. M. Williams Surface Grafting of a Thrombin Substrate on a Polymer Membrane and the Inhibition of Thrombin Activity Leading to Non--thrombogenicity; Y. Ito, L.--S. Liu and Y. Imanishi Acid----Base Effects at Polymer Interfaces; C. J. van Oss
30 years ago, polymer processing was considered to be a set of operations aiming at imparting a desired shape to the material, while its final properties were defined exclu sively by the molecular structure and architecture resulted from the respective synthetic approaches. These two fields of knowledge - polymer processing and polymer structure - grew closer as several scientific and technological works disclosed the microstructure and other morphological features developed by polymeric systems upon different process ing conditions. Even before the real understanding of the polymer structural details, engineers were able to make use of the effect of molecular orientation and to manufacture polymeric fi bres with enhanced properties in terms of stiffness and strength. However, it was during the 1970s that the scientific community started to relate microstructure development and the thermomechanical environment associated to different processing techniques. Ever since, very important works were done on semi crystalline, amorphous or blended polymers in order to identify and, recently, to predict the effect of the imposed shear fields and cool ing gradients on the final product properties. These efforts led to more accurate process ing methods and stimulated new engineering approaches, such as property enhancement through out-of-the-processing as well as on-line control. Modem processing technology has developed further towards the nano level, enabling impacts on the macromolecular structure."
-
Viscoelastic behavior reflects the combined viscous and elastic responses, under mechanical stress, of materials which are intermediate between liquids and solids in character. Polymers—the basic materials of the rubber and plastic industries and important to the textile, petroleum, automobile, paper, and pharmaceutical industries as well—exhibit viscoelasticity to a pronounced degree. Their viscoelastic properties determine the mechanical performance of the final products of these industries, and also the success of processing methods at intermediate stages of production. Viscoelastic Properties of Polymers examines, in detail, the effects of the many variables on which the basic viscoelastic properties depend. These include temperature, pressure, and time; polymer chemical composition, molecular weight and weight distribution, branching and crystallinity; dilution with solvents or plasticizers; and mixture with other materials to form composite systems. With guidance by molecular theory, the dependence of viscoelastic properties on these variables can be simplified by introducing certain ancillary concepts such as the fractional free volume, the monomeric friction coefficient, and the spacing between entanglement loci, to provide a qualitative understanding and in many cases a quantitative prediction of how to achieve desired results. The phenomenological theory of viscoelasticity—which permits interrelation of the results of different types of experiments—is presented first, with many useful approximation procedures for calculations given. A wide variety of experimental methods is then described, with critical evaluation of their applicability to polymeric materials of different consistencies and in different regions of the time scale (or, for oscillating deformations, the frequency scale). A review of the present state of molecular theory follows, so that viscoelasticity can be related to the motions of flexible polymer molecules and their entanglements and network junctions. The dependence of viscoestic properties on temperature and pressure, and its descriptions using reduced variables, are discussed in detail. Several chapters are then devoted to the dependence of viscoelastic properties on chemical composition, molecular weight, presence of diluents, and other features, for several characteristic classes of polymer materials. Finally, a few examples are given to illustrate the many potential applications of these principles to practical problems in the processing and use of rubbers, plastics, and fibers, and in the control of vibration and noise. The third edition has been brought up to date to reflect the important developments, in a decade of exceptionally active research, which have led to a wider use of polymers, and a wider recognition of the importance and range of application of viscoelastic properties. Additional data have been incorporated, and the book’s chapters on dilute solutions, theory of undiluted polymers, plateau and terminal zones, cross-linked polymers, and concentrated solutions have been extensively rewritten to take into account new theories and new experimental results. Technical managers and research workers in the wide range of industries in which polymers play an important role will find that the book provides basic information for practical applications, and graduate students in chemistry and engineering will find, in its illustrations with real data and real numbers, an accessible introduction to the principles of viscoelasticity.
This book deals with the micromechanical characterization of polymer materials. It emphasizes microhardness as a technique capable of detecting a variety of morphological and textural changes in polymers. The authors provide a comprehensive introduction to the microhardness of polymers, including descriptions of the various testing methods in materials science and engineering. They also discuss the micromechanical study of glassy polymers and the relevant aspects of microhardness of semicrystalline polymers. Numerous application examples of the microhardness technique for the characterization of polymeric materials help readers develop a solid understanding of the material. These real world examples include the influence of polymer processing, the use in weathering tests, the characterization of modified polymer surfaces, and others. This book will be of use to graduate level materials science students, as well as research workers in materials science, mechanical engineering and physics departments interested in the microindentation hardness of polymer materials.
This is the first book to present a topical overview of the
research and development of microbial polyesters.
Polymer science is fundamentally interdisciplinary, yet specialists in one aspect, such as chemistry or processing, frequently encounter difficulties in understanding the effects of other disciplines on their own. This book describes clearly how polymer chemistry and polymer processing interact to affect polymer properties. As such, specialists in both disciplines can gain a deeper understanding of how these subjects underpin each other. Coverage includes step-by-step introductions to polymer processing technologies; details of fluid flow and heat transfer behaviour; shaping methods and physical processes during cooking and curing, and analyses of moulding and extrusion processes.
This book is designed to fulfill a dual role. On the one hand it provides a description of the rheological behavior of molten poly mers. On the other, it presents the role of rheology in melt processing operations. The account of rheology emphasises the underlying principles and presents results, but not detailed deriva tions of equations. The processing operations are described qualita tively, and wherever possible the role of rheology is discussed quantitatively. Little emphasis is given to non-rheological aspects of processes, for example, the design of machinery. The audience for which the book is intended is also dual in nature. It includes scientists and engineers whose work in the plastics industry requires some knowledge of aspects of rheology. Examples are the polymer synthetic chemist who is concerned with how a change in molecular weight will affect the melt viscosity and the extrusion engineer who needs to know the effects of a change in molecular weight distribution that might result from thermal degra dation. The audience also includes post-graduate students in polymer science and engineering who wish to acquire a more extensive background in rheology and perhaps become specialists in this area. Especially for the latter audience, references are given to more detailed accounts of specialized topics, such as constitutive relations and process simulations. Thus, the book could serve as a textbook for a graduate level course in polymer rheology, and it has been used for this purpose."
Polymers are mainly characterized by molar mass, chemical composition, functionality and architecture. The determination of the complex structure of polymers by chromatographic and spectroscopic methods is one of the major concerns of polymer analysis and characterization. This lab manual describes the experimental approach to the chromatographic analysis of polymers. Different chromatographic methods, their theoretical background, equipment, experimental procedures and applications are discussed. The book will enable polymer chemists, physicists and material scientists as well as students of macromolecular and analytical science to optimize chromatographic conditions for a specific separation problem. Special emphasis is given to the description of applications for homo- and copolymers and polymer blends.
Discerning the properties of polymers and polymer-based materials requires a good understanding of characterization. This revised and updated text provides a comprehensive survey of characterization methods within its simple, concise chapters. Polymer Characterization: Physical Techniques, provides an overview of a wide variety of characterization methods, which makes it an excellent textbook and reference. It starts with a description of basic polymer science, providing a solid foundation from which to understand the key physical characterization techniques. The authors explain physical principles without heavy theory and give special emphasis to the application of the techniques to polymers, with plenty of illustrations. Topics covered include molecular weight determination, molecular and structural characterization by spectroscopic techniques, morphology and structural characterization by microscopy and diffraction, and thermal analysis. This edition contains a new chapter on surface analysis as well as some revised problems and solutions. The concise treatment of each topic offers even those with little prior knowledge of the subject an accessible source to relevant, simple descriptions in a well-organized format.
Light Alloys Directory and Databook is a world-wide directory of the properties and suppliers of light alloys used in, or proposed for, numerous engineering applications. Alloys covered will include aluminium alloys, magnesium alloys, titanium alloys, beryllium. For the metals considered each section will consist of: a short introduction; a table comparing basic data and a series of comparison sheets. The book will adopt standardised data in order to help the reader in finding and comparing different materials and identifying the required information. All comparison sheets are cross-referenced, so that the user will be able to locate data on a specific product or compare properties easily. The book is designed to complement the existing publications on high performance materials.
Polymer Science and Nanotechnology: Fundamentals and Applications brings together the latest advances in polymer science and nanoscience. Sections explain the fundamentals of polymer science, including key aspects and methods in terms of molecular structure, synthesis, characterization, microstructure, phase structure and processing and properties before discussing the materials of particular interest and utility for novel applications, such as hydrogels, natural polymers, smart polymers and polymeric biomaterials. The second part of the book examines essential techniques in nanotechnology, with an emphasis on the utilization of advanced polymeric materials in the context of nanoscience. Throughout the book, chapters are prepared so that materials and products can be geared towards specific applications. Two chapters cover, in detail, major application areas, including fuel and solar cells, tissue engineering, drug and gene delivery, membranes, water treatment and oil recovery.
Processing and Development of Polysaccharide-Based Biopolymers for Packaging Applications presents the latest cutting-edge research into the processing and utilization of bio-based polymers for packaging applications, covering materials derived from polysaccharides, polylactic acid (PLA), polyhydroxyalkanoates (PHAs), polybutylene and bio-polyethylene. The book also covers the principles of biopolymer plasticization, experimental and modeling techniques, the use of nanotechnology, and key advances relating to biopolymer-based packaging, including anti-microbials, anti-oxidative agents, and modified atmosphere packaging (MAP).
Polymer Science and Innovative Applications: Materials, Techniques, and Future Developments introduces the science of innovative polymers and composites, their analysis via experimental techniques and simulation, and their utilization in a variety of application areas. This approach helps to unlock the potential of new materials for product design and other uses. The book also examines the role that these applications play in the human world, from pollution and health impacts, to their potential to make a positive contribution in areas including environmental remediation, medicine and healthcare, and renewable energy. Advantages, disadvantages, possibilities, and challenges relating to the utilization of polymers in human society are included.
The book provides an extensive coverage of conjugated polymer based nano-composite coatings with advanced anti-corrosive properties. The book gives detailed explanation of corrosion testing methods and techniques to evaluate the corrosion resistance of the coatings. It includes elaborate discussion on classification of corrosion, electrochemistry of corrosion process, theories explaining the mechanism of corrosion and various corrosion testing standards. Electrochemical studies like open circuit potential (OCP) variation with time, potentiodynamic polarization, Electrochemical Impedance Spectroscopy (EIS) and accelerated corrosion testing are highlighted as important tools to extract information about the behavior of coatings under corrosive conditions. The book discusses epoxy-conjugated polymer based novel composite coating formulations, including aniline and o-toluidine, o-anisidine, phenetidine and pentafluoroaniline with appropriate fillers like SiO2, flyash, ZrO2 nanoparticles, and chitosan for the protection of metallic substrates. A general discussion on the self healing mechanism of epoxy-polypyrrole based biopolymer hybrid composite coatings is included in this book. This book provides a critical review on the conjugated polymer based composite coatings with superior corrosion resistance, good mechanical integrity, better adhesion properties and self healing ability under highly aggressive conditions which can be commercially used for the protection of metal substrates from corrosion.
The overall aim of this book is to aid the process of sourcing and selecting appropriate thermoplastic polymers. There are now a wide diversity of thermoplastics offered for commercial uses. At one end of the range are the high-volume commodity materials for short life consumer applications. Whereas at the other end are the high value engineering materials; with significant levels of mechanical, physical and electrical performance. Within this publication, the generic groups of thermoplastics can be identified, along with their respective attributes and limitations. All thermoplastics are available in different grades. The constituents selected to form a grade are chosen to modify aspects of material behaviour, both during processing and in the final moulded form. The directory addresses materials which can be obtained in granular, powder or paste form for subsequent processing. Information is not provided directly on semi-finished product forms, such as films, fibres, sheet or profiles, other than when inferred from the processing descriptions of specified grades. The directory covers virgin or compounded material. It does not specifically address reclaimed or recycled grades. Data is provided for the mechanical and physical properties of moulded grades as processed by the route intended by the primary manufacturer (M) or compounder (C). Material grades can be obtained from a number of sources; either the original polymer manufacturer or a recognised compounder who produces a range of grades."
The book presents emerging economic and environmentally friendly lignocellulosic polymer composites materials that are free from side effects studied in the traditional synthetic materials. This book brings together panels of highly-accomplished leading experts in the field of lignocellulosic polymers & composites from academia, government, as well as research institutions across the globe and encompasses basic studies including preparation, characterization, properties and theory of polymers along with applications addressing new emerging topics of novel issues. Provide basic information and clear understanding of the present state and the growing utility of lignocellulosic materials from different natural resourcesIncludes contributions from world-renowned experts on lignocellulosic polymer composites and discusses the combination of different kinds of lignocellulosic materials from natural resourcesDiscusses the fundamental properties and applications of lignocellulosic polymers in comparison to traditional synthetic materialsExplores various processing/ mechanical/ physic-chemical aspects of lignocellulosic polymer composites
A worldwide directory of commercially available adhesive products for use in a wide range of engineering disciplines. Along with product names and suppliers, basic property data are tabulated and cross-referenced. The book is subdivided according to class of adhesive, with introductions to each class followed by comparison tables and datasheets for each adhesive. The datasheets contain detailed information, from product codes to environmental properties and are therefore of interest across a broad readership. Standardized data will aid the user in cross-comparison between different manufacturers and in easily identifying the required information.
This book deals with the new and now-expanding field of friction, wear, and other surface-related mechanical phenomena for polymers. Polymers have been used in various forms such as bulk, films, and composites in applications where their friction, wear resistance, and other surface-related properties have been effectively utilized. There are also many examples in which polymers have performed extremely well, such as in tyres, shoes, brakes, gears, bearings, small moving parts in electronics and MEMS, cosmetics/hair products, and artificial human joints. Around the world, much research is currently being undertaken to develop new polymers, in different forms, for further enhancing tribological performance and for finding novel applications. Keeping in view the importance of tribology of polymers for research and technology as well as the vast literature that is now available in research papers and review articles, this timely book brings together a wealth of research data for an understanding of the basic principles of the subject.
Among electrode materials, inorganic materials have received vast consideration owing to their redox chemistry, chemical stability, high electrochemical performance, and high-power applications. These exceptional properties enable inorganic-based materials to find application in high-performance energy conversion and storage. The current advances in nanotechnology have uncovered novel inorganic materials by various strategies and their different morphological features may serve as a rule for future supercapacitor electrode design for efficient supercapacitor performance. Inorganic Nanomaterials for Supercapacitor Design depicts the latest advances in inorganic nanomaterials for supercapacitor energy storage devices. Key Features: Provides an overview on the supercapacitor application of inorganic-based materials. Describes the fundamental aspects, key factors, advantages, and challenges of inorganic supercapacitors. Presents up-to-date coverage of the large, rapidly growing, and complex literature on inorganic supercapacitors. Surveys current applications in supercapacitor energy storage. Explores the new aspects of inorganic materials and next-generation supercapacitor systems.
The main emphasis of these Lecture Notes is on constructing solutions to specific viscoelastic boundary value problems; however properties of the equations of viscoelasticity that provide the theoretical underpinnings for constructing such solutions are also covered. Particular attention is paid to the solution of crack and contact problems. This work is of interest in the context of polymer fracture, modelling of material behaviour, rebound testing of polymers and the phenomenon of hysteretic friction.
This book consists of two strongly interweaved parts: the mathematical theory of stochastic processes and its applications to molecular theories of polymeric fluids. The comprehensive mathematical background provided in the first section will be equally useful in many other branches of engineering and the natural sciences. The second part provides readers with a more direct understanding of polymer dynamics, allowing them to identify exactly solvable models more easily, and to develop efficient computer simulation algorithms in a straightforward manner. In view of the examples and applications to problems taken from the front line of science, this volume may be used both as a basic textbook or as a reference book. Program examples written in FORTRAN are available via ftp from ftp.springer.de/pub/chemistry/polysim/.
The book aims at giving an overview of current methods in engineering mechanics of FRP components and structures as well as hybrid components and structures. Main emphasis is on basic micro and macro mechanics of laminates. Long as well as short fibre composites are studied, and criteria for different kinds of rupture are treated. Micromechanical considerations for material characterization and mechanisms of static ductile and brittle rupture are studied, as well as FRP structures under thermal and dynamic loading programs. Optimum design and manufacture situations are described as well. The book makes designers familiar with the opportunities and limitations of modern high quality fibre composites. Practical engineering applications of the described analytical and numerical methods are also presented.
This book is the result of my teaching efforts during the last ten years at the Royal Institute of Technology. The purpose is to present the subject of polymer physics for undergraduate and graduate students, to focus the fundamental aspects of the subject and to show the link between experiments and theory. The intention is not to present a compilation of the currently available literature on the subject. Very few reference citations have thus been made. Each chapter has essentially the same structure: starling with an introduction, continuing with the actual subject, summarizing the chapter in 30D-500 words, and finally presenting problems and a list of relevant references for the reader. The solutions to the problems presented in Chapters 1-12 are given in Chapter 13. The theme of the book is essentially polymer science, with the exclusion of that part dealing directly with chemical reactions. The fundamentals in polymer science, including some basic polymer chemistry, are presented as an introduction in the first chapter. The next eight chapters deal with different phenomena (processes) and states of polymers. The last three chapters were written with the intention of making the reader think practically about polymer physics. How can a certain type of problem be solved? What kinds of experiment should be conducted? This book would never have been written without the help of my friend and adviser, Dr Anthony Bristow, who has spent many hours reading through the manuscript. criticizing the content. |
![]() ![]() You may like...
The Oxford Handbook of Case
Andrej Malchukov, Andrew Spencer
Hardcover
R4,850
Discovery Miles 48 500
Pattern and Data Analysis in Healthcare…
Vivek, Tiwari, Basant Tiwari, …
Hardcover
R5,889
Discovery Miles 58 890
WJEC Physics for A2 Level Student Book…
Gareth Kelly, Nigel Wood
Paperback
R1,312
Discovery Miles 13 120
Handbook of Research on Applied AI for…
Bryan Christiansen, Tihana I?1/2krinjari?
Hardcover
R8,920
Discovery Miles 89 200
|