![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Plastics & polymers technology
This volume consists of written chapters taken from the
presentations at the symposium "100+ Years of Plastics: Leo
Baekeland and Beyond," held March 22, 2010, at the 239th ACS
National Meeting in San Francisco. The symposium celebrates the
100th anniversary of the formation of General Bakelite Corp., which
was preceded by Leo Baekland's synthesis of Bakelite in 1907 and
the unveiling of the Bakelite process in 1909. It is quite
reasonable to use the synthesis of Bakelite as the starting point
of the Age of Plastics. Indeed, Time magazine in its June 14, 1999,
issue on the 100 most influential people of the 20th century chose
Leo Baekeland and his Bakelite synthesis as the sole representative
of chemistry.
The result of a collaboration between a theoretician and an experimentalist, this book is devoted to the static properties of flexible polymers in solution. It presents the vast progress made by both theory and experiment in recent years. Despite the variety in the chemical composition and physical properties of long polymer chains, when in solution they show a universality in their behaviour. On the experimental side, the use of photon and neutron scattering has led to a better understanding, while the use of computer simulation has also produced interesting results. This work is the result of a collaboration between a theoretician and an experimentalist, who have both worked for many years on polymer solutions.
Rheology: Concepts, Methods, and Applications, Fourth Edition provides a thorough historical and theoretical grounding in the field and introduces rheology as the method for solving many practical problems in materials science and engineering. This new edition has been updated to include new evidence-based methods and applications, coverage of non-Newtonian properties and their effect on material processing, heterogeneity in flow, rheology of highly concentrated emulsions and suspensions, viscosity and viscoelastic behavior of nanocomposites, the behavior of supramolecular solutions, rheology of gels, deformation-induced anisotropy, conformation changes during flow and molecular orientation. The book is practical and relevant for industry, but also consistent with rheology courses in academia, making it relevant to both academics and accomplished rheologists in industry.
Databook of Blowing and Auxiliary Agents, Second Edition includes the most current information on foaming technology, guiding users on the proper selection of formulation, which is highly dependent on the mechanisms of action of blowing agents and foaming agents, as well as dispersion and solubility. The book includes properties of 23 groups of blowing agents and the typical range of technical performance for each group, including general properties, physical-chemical properties, health and safety, environmental impact, and applications in different products and polymers. All information is illustrated by chemical reactions and diagrams. Chapters in the book look at foaming mechanisms with the use of solid blowing agents, which are decomposed to the gaseous products by application of heat, production of gaseous products by chemical reaction, and foaming by gases and evaporating liquids.
Polymer Hybrid Materials and Composites: Fundamentals and Applications presents an introduction to the principles behind polymeric hybrid materials, providing both theoretical and practical information on the synthesis and application of these materials. It documents the latest innovations, ranging from materials development and characterization of properties, to applications. Sections cover the route from laboratory to industry, providing practical, actionable guidance to assist the scaling up process for applications in areas including energy technology, solar cells, water purification, medical devices, optical and electrical devices, and more. It is an essential introduction to the emerging technologies that are made possible by these advanced materials.
Applications of Polyurethanes in Medical Devices provides detailed coverage of polyurethane (PU) chemistry, processing and preparation for performant medical devices. Polyurethanes have found many uses in medical applications, due to their biocompatibility, biostability, physical properties, surface polarity, and the ability to suit the field of application. This book enables the reader to understand polyurethane and how this valuable material can be used in medical devices. Sections cover the chemistry, structure, and properties of polyurethane, with in-depth sections examining raw materials, reaction chemistry, synthesis techniques, reaction kinetics, material microstructure, and structure-property relationships. Subsequent chapters demonstrate how polyurethane can be utilized in medical device applications, examining biological properties, rheology and processing before methodical coverage explains how polyurethane may be used for each category of medical device. Finally, future directions, and safety and environmental aspects, are covered.
Polymers used in electronics and electrical engineering are essential to the development of high-tech products, with applications in space, aviation, health, automotive, communication, robotics, consumer products, and beyond. Typical features of mainstream polymers such as mechanical performance, optical behavior, and environmental stability frequently need to be enhanced to perform in these demanding applications, creating the need to develop special grades or use completely new chemistry for their synthesis. Similarly, the typical set of properties included in the description of mainstream polymers are not sufficient for polymer selection for these applications, as they require different data, data that is meticulously detailed in the Handbook of Polymers for Electronics. The book provides readers with the most up-to-date information from the existing literature, manufacturing data, and patent filings. Presenting data for all polymers based on a consistent pattern of arrangement, the book provides details organized into the following sections: General; history; synthesis; structure; commercial polymers; physical properties; electrical properties; mechanical properties; chemical resistance; flammability; weather stability; thermal stability; biodegradation; toxicity; environmental impact; processing; blends; analysis. The contents, scope, treatment and novelty of the data makes this book an essential resource for anyone working with polymeric materials used in modern electronic applications.
Databook of Antiblocking, Release, and Slip Additives, Second Edition contains detailed information on over 300 important additives for polymers, including additives that are used to minimize adhesion, aid separation, and enhance processing and end-applications for polymers. Each additive is presented with data in the following categories: General Information, Physical Properties, Health and Safety, Ecological Properties, and Use and Performance. Data fields covered include state, odor, color, autoignition temperature, probability of biodegradation, and much more. Recommendations are given for specific products, processing methods, and mold materials, and an assessment is given for each additive's features and benefits.
Handbook of Foaming and Blowing Agents provides useful guidance to assist practitioners in the more efficient and effective selection of foaming methods and blowing agents. The book focuses on the selection of additives for a diverse range of foaming processes, which can be enhanced using modern chemical means to improve product quality, speed up the process, and broaden the range of products that can be produced using foaming technology. Foamed polymers have many beneficial properties, including lower density, high heat and sound insulation, and shock absorbency. Foamed plastic parts are now a ubiquitous part of everyday life-from food packaging to seat cushions. As the application of foamed polymers expands and diversifies, a variety of foaming techniques and equipment are available to produce very diverse range of products. Foaming methods are generally established, but very little is known about the composition of materials to be processed and the additives to enhance foam products or make the foam production more economical. The book introduces useful analytical techniques for foaming, and thoroughly discusses the environmental impact of foaming processes.
Handbook of Odors in Plastic Materials, Second Edition, analyzes the reasons behind unwanted odor formation and the methods for preventing it. The book covers the fundamentals of odor formation and its transport within a material, the relationship between odor and toxicity, and seventeen methods of odor removal. Odor can play a significant role in the success of a product; it can decide whether a customer purchases the product in the first place, or can be the cause of complaints or returns. Similarly, in scented products, the retention of volatile components is a particular challenge and opportunity. There are several factors which have an impact on the formation of odors in plastic materials, including the properties of the polymer, use of additives in processing, exposure to radiation and oxygen, storage, and recycling. Thirty-seven polymers and forty-one critical product groups are analyzed based on the latest research publications and patents. The book also discusses regulations related to odor in products, effects of odor on health and safety, and the effect of odors from plastic materials on indoor air quality.
Handbook of Plasticizers, Third Edition, is an essential professional reference, providing information that enables R&D scientists, production chemists, and engineers the information they need to use plasticizers more effectively, and to avoid certain plasticizers in applications where they may cause health or material durability problems. Plasticizers are vital to the plastics industry, particularly in improving the properties of materials such as PVC. Plasticizers are commonly added to complex mixtures containing a variety of materials, so successful incorporation requires a broad understanding of the mechanisms of plasticizer action, and compatibility with different materials and blends. There is a large selection of commercial plasticizers, and various environmental issues which impact on selection decisions. The book discusses new and historical approaches to the use of plasticizers, explaining mechanisms of plasticizers' action and their behavior in plasticized systems. It goes into detail on the use of plasticizers in a range of specific polymers, polymer blends, and other industrial products. This includes coverage of the impact of plasticizers on processing. George Wypych provides the data and know-how from the most recent sources and updated information required by engineers and scientists working in the plastics industry and the many industry sectors that use plastics in their products. The book covers the uses, advantages, and disadvantages of plasticizers, historical and theoretical background, their effects on process conditions, and health, safety, and environmental issues.
Databook of Plasticizers, Second Edition, contains data on the most important plasticizers in use today, including over 375 generic and commercial plasticizers. The data comes from a range of sources beyond plasticizers' manufacturers, allowing for a detailed comparison of properties between different plasticizers. Over 100 different data fields are provided, from general information, such as molecular structure and formula, to physical properties, health and safety information, ecological properties, and recommendations regarding appropriate use and performance of each plasticizer. The databook is an essential resource for engineers, technicians, and materials scientists responsible for specifying a plasticizer. It provides trustworthy and up-to-date data that is applicable to a range of numerous application areas, such as construction, automotives, food packaging, and more.
The applications of biocomposite materials are increasing in aerospace, automobile, and household items due to their biodegradable, renewable, non-corrosion, and high strength to weight ratio properties. The processing and characterization of biofiber-reinforced biocomposite materials are vital for their strength and performance. This book discusses the properties, chemical treatment, and compatibility of biofibers with materials.
Polylactic Acid: A Practical Guide for the Processing, Manufacturing, and Applications of PLA, Second Edition, provides a practical guide for engineers and scientists working in PLA and on the development of emerging new products. The current market situation for PLA and biodegradable polymers is described, along with applications across a range of market sectors. In addition, the mechanical, chemical, thermal, rheology and degradation properties are included. Updates include new chapters covering various processing methods, as well as recycling methods, and additives and processing aids. New applications cover a range of products (including 3D Printing), and an environmental assessment, including regulatory aspects. The book is not only a useful introduction to this topic, but also a practical, readily applicable reference book that will support decision-making in the plastics industry.
Biopolymers: Applications and Trends provides an up-to-date summary of the varying market applications of biopolymers characterized by biodegradability and sustainability. It includes tables with the commercial names and properties of each biopolymer family, along with biopolymers for each marketing segment, not only presenting all the major market players, but also highlighting trends and new developments in products. The book includes a thorough breakdown of the vast range of application areas, including medical and pharmaceutical, packaging, construction, automotive, and many more, giving engineers critical materials information in an area which has traditionally been more limited than conventional polymers. In addition, the book uses recent patent information to convey the latest applications and techniques in the area, thus further illustrating the rapid pace of development and need for intellectual property for companies working on new and innovative products.
Databook of Nucleating Agents gives engineers and materials scientists the information they need to increase the production rate, modify structure and morphology, and reduce haze of polymeric products with proper selection of nucleating agents and clarifying agents. Chemical origin and related properties of nucleating agents are analyzed in general terms to highlight the differences in their properties, including the essential theoretical knowledge required for correct selection and use of nucleating and clarifying agents. This includes methods of chemical modification of nucleating agents and their deposition on suitable substrates; methods, and results of dispersion of nucleating agents, influence of their concentration and cooling rate on final result and rate of crystallization, nucleation efficiency of different products and the reasons behind it, and generally accepted mechanisms of nucleation. The book also covers application aspects in different formulations. Patent literature and research papers are extensively reviewed for different applications, and polymer processing methods which require use of nucleating agents are discussed, with an emphasis on the intricacies of use of nucleating agents in different polymers and products.
Fluoroplastics, Volume 2 compiles in one place a working knowledge of the polymer chemistry and physics of melt processible fluoropolymers with detailed descriptions of commercial processing methods, material properties, fabrication and handling information, technologies, and applications. Also, history, market statistics, and safety and recycling aspects are covered. Both volumes contain a large amount of specific property data which is useful for users to readily compare different materials and align material structure with end use applications. Volume 2 concentrates on melt-processible fluoropolymers used across a broad range of industries including automotive, aerospace, electronic, food, beverage, oil/gas, and medical devices. Materials include fluorocopolymers and specific other fluorine-containing polymers, which are by-and-large melt-processible. Since the first edition was published many new technical developments and market changes have taken place and new grades of materials entered the market. This new edition is a thoroughly updated and significantly expanded revision covering new technologies and applications, and addressing the changes that have taken place in the fluoropolymer markets. " Fluoroplastics, Volume 2" is an all-encompassing handbook for
melt processible fluoropolymers - unique reference for
professionals in the fluoropolymer industry and fluoropolymer
application industries. Practical approach, written by long-standing authority in the fluoropolymers industry. New technologies, materials and applications are included in the new edition.
Handbook of Polymers, Second Edition, presents normalized, up-to-date polymer data in a consistent and easily referenceable layout. This new edition represents an update of the available data, including new values for many commercially available products, verification of existing data, and removal of older data where it is no longer useful. The book includes data on all major polymeric materials used by the plastics industry and all branches of the chemical industry, as well as specialty polymers used in the electronics, pharmaceutical, medical, and space fields. The entire scope of the data is divided into sections to make data comparison and search easy, including synthesis, physical, mechanical, and rheological properties, chemical resistance, toxicity and environmental impact, and more. The data enables engineers and materials scientists to solve practical problems, be that in applications, research and development, or legislation. The most current grades of materials have been selected to provide readers with information that is characteristic of currently available products.
Fluoropolymers are used in applications demanding service at enhanced temperature while maintaining their structural integrity and have excellent combination of chemical, physical and mechanical properties. Advancements in materials and processing technology mean that a huge amount of research is currently taking place into new, high performance applications for specialty fluorinated polymers. This book is a complete review of the current research in synthesizing new fluorinated high performance polymers and their application in the field of low dielectric constant materials, membrane based separation (gas and liquid) and proton exchange membranes. Special emphasis is given to the preparation of soluble high performance polymers by incorporating fluorine and different structural elements so as to use these classes of polymers in different membrane based applications, including low dielectric constant materials, gas separation, pervaporation, proton exchange membranes in fuel cells, and more. The coverage of processing properties and commercial aspects - as well as a practical assessment of the advantages and disadvantages of specialty fluoropolymers compared to other materials - enables engineers and product designers to apply the latest scientific developments in this area in a practical setting. |
![]() ![]() You may like...
|