![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Plastics & polymers technology
Polymer Microscopy, 3rd Edition, is a comprehensive and practical guide to the study of the microstructure of polymers, and is the result of the authors' many years of academic and industrial experience. To address the needs of students and professionals from a variety of backgrounds, introductory chapters deal with the basic concepts of both polymer morphology and processing and microscopy and imaging theory. The core of the book is more applied, with many examples of specimen preparation and image interpretation leading to materials characterization.Microscopy is applied to the characterization of a wide range of polymer systems, including fibers, films, engineering resins and plastics, composites, nanocomposites, polymer blends, emulsions and liquid crystaline polymers. Light microscopy, atomic force microscopy, scanning and transmission electron microscopy techniques are all considered, as are emerging techniques such as compositional mapping in which microscopy is combined with spectroscopy. This extensively updated and revised third edition closes with a problem solving guide, which gives a systematic framework for deciding on suitable approaches to the characterization of
This handbook collects over 800 infrared spectra of rubbers, plastics and thermoplastics elastometers. It contains five different libraries: rubbers in transmission spectroscopy, rubbers in pyrolysate spectroscopy, plastics in transmission spectroscopy, plastics in pyrolysate spectroscopy, and rubbers and plastics in single-bounce ATR spectroscopy. This is an invaluable reference for the rubbers and plastics industry.
About ten years after the publication of the Second Edition (1973), it became apparent that it was time for an up-date of this book. This was especially true in this case, since the subject matter has traditionally dealt mainly with the structure, properties, and technology of the various elastomers used in industry, and these are bound to undergo significant changes over the period of a decade. In revising the contents of this volume, it was thought best to keep the orig inal format. Hence the first five chapters discuss the same general subject matter as before. The chapters dealing with natural rubber and the synthetic elastomers are up-dated, and an entirely new chapter has been added on the thermoplastic elastomers, which have, of course, grown tremendously in importance. Another innovation is the addition of a new chapter, "Miscellaneous Elastomers," to take care of "old" elastomers, e.g., polysulfides, which have decreased some what in importance, as well as to introduce some of the newly-developed syn thetic rubbers which have not yet reached high production levels. The editor wishes to express his sincere appreciation to all the contributors, without whose close cooperation this task would have been impossible. He would especially like to acknowledge the invaluable assistance of Dr. Howard Stephens in the planning of this book, and for his suggestion of suitable authors."
Liquid crystal polymers (LCPs) have many strange properties that may be utilized to advantage in the processing of products made from them and their blends with isotropic polymers. This volume (volume 2 in the series Polymer Liquid Crystals) deals with their strange flow behaviour and the models put forward to explain the phenomena that occur in such polymers and their blends. It has been known for some time that small ad ditions of a thermotropic LCP to isotropic polymers not only gives an improvement in the strength and stiffness of the blend but improves the processability of the blend over that of the isotropic polymer. In the case of lyotropic LCPs, it is possible to create a molecular composite in which the reinforcement of an isotropic polymer is achieved at a molecular level by the addition of the LCP in a common solvent. If the phenomena can be fully understood both the reinforcement and an increase in the proces sability of isotropic polymers could be optimized. This book is intended to illustrate the current theories associated with the flow of LCPs and their blends in the hope that such an optimization will be achieved by future research. Chapter 1 introduces the subject of LCPs and describes the ter minology used; Chapter 2 then discusses the more complex phenomena associated with these materials. In Chapter 3, the way in which these phe nomena may be modelled using hamiltonians is fully covered."
Synthetic Polymers is a comprehensive introduction to the technologies involved in the synthesis of the main classes of engineering high polymers used in such materials as plastics, fibers, rubbers, foams, adhesives and coatings. Besides the basic processes, this volume includes information on physical, chemical and mechanical characteristics - key factors with respect to obtaining the right end products. It also focuses on the main application of synthetic polymers in different engineering areas and gives data on production and consumption. Over 60 technological flowcharts are presented in a clear and concise manner, to provide the reader with essential information on relevant operations.
Polymers are ubiquitous and pervasive in industry, science, and technology. These giant molecules have great significance not only in terms of products such as plastics, films, elastomers, fibers, adhesives, and coatings but also less ob viously though none the less importantly in many leading industries (aerospace, electronics, automotive, biomedical, etc.). Well over half the chemists and chem ical engineers who graduate in the United States will at some time work in the polymer industries. If the professionals working with polymers in the other in dustries are taken into account, the overall number swells to a much greater total. It is obvious that knowledge and understanding of polymers is essential for any engineer or scientist whose professional activities involve them with these macromolecules. Not too long ago, formal education relating to polymers was very limited, indeed, almost nonexistent. Speaking from a personal viewpoint, I can recall my first job after completing my Ph.D. The job with E.I. Du Pont de Nemours dealt with polymers, an area in which I had no university training. There were no courses in polymers offered at my alma mater. My experience, incidentally, was the rule and not the exception."
Although size exclusion chromatography (SEC) is perhaps the most popular and widely used technique for determining the molecular weight distribution of polymeric materials, there have been very few texts written on this topic. During the past decade, SEC has experienced a considerable amount of growth in regard to column and detector technology and new applications. With these advances, SEC can now be used for determining absolute molecular weight, polymer chain conformation and size, and branching, as well as polymer solution properties. This book introduces the reader to the fundamentals of SEC with emphasis on practical aspects of the technique, such as column and mobile selection, calibration, new detector capabilities and guidelines for performing SEC on most types of polymers, especially those of industrial importance. This book is intended for either those new to the field of SEC, or for those research workers who require a more comprehensive background.
Advanced Fluoropolymer Nanocomposites: Fabrication, Processing, Characterization and Applications presents a comprehensive review on the fundamental chemistry, physics, biology and engineering of advanced fluoropolymer nanocomposites. Detailed attention is given to the synthesis, processing characterization, properties and applications of fluoropolymer nanocomposites. Morphological, thermal, electrical, mechanical, tribological and viscoelastic properties are also discussed in detail, along with the influence of synthesis methods on the formation of fluoropolymer nanocomposites, including the effect of nanofiller size and shape and the dispersion state of various nanofillers in different fluoropolymer matrices. This book will be a useful reference resource for scientists, engineers and postgraduate students working in the field of polymer science and technology, materials science and engineering, composites and nanocomposites. This resource will help them find solutions to both fundamental and applied problems associated with their research. It will also assist researchers in becoming more acquainted with the field to address key questions within a short time.
Polymers in Electronics: Optoelectronic Properties, Design, Fabrication, and Applications brings together the fundamentals and latest advances in polymeric materials for electronic device applications, supporting researchers, scientists and advanced students, and approaching the topic from a range of disciplines. The book begins by introducing polymeric materials, their dielectric, optical, and thermal properties, and the essential principles and techniques for polymers as applied to electronics. This is followed by detailed coverage of the key steps in the preparation of polymeric materials for opto-electronic devices, including fabrication methods, materials design, rheology, encapsulation, and conductive polymer mechanisms. The final part of the book focuses on the latest developments in advanced devices, covering the areas of photovoltaics, transistors, light-emitting diodes, and stretchable electronics. In addition, it explains mechanisms, design, fabrication techniques, and end applications. This is a highly valuable resource for researchers, advanced students, engineers and R&D professionals from a range of disciplines.
Polyurea: Synthesis, Properties, Composites, Production, and Applications is a comprehensive and practical guide to polyurea, a material used for its exceptional properties and performance in a range of high value industrial applications. Sections cover polyurea formulations and properties, comparing aromatic polyurea with aliphatic polyurea and computation modeling of properties for polyurea and polyurea composites. This is followed by in-depth coverage of synthesis, structure and production methods of polyurea, with the connections between production, performance and properties examined thoroughly. Other sections explain the preparation, characterization, modeling and applications of polyurea and polyurea composites with the required properties for specific advanced applications. Finally, environmental issues, recycling and future potential of polyurea are considered. This is a valuable resource for researchers and advanced students in polymer science, chemistry, composite science, civil engineering, materials science and mechanical engineering, as well as R&D professionals, engineers and industrial scientists with an interest in polyurea-based materials for advanced applications.
This volume chronicles the proceedings of the Third Symposium on Metallized Plastics: Fundamental and Applied Aspects held under the auspices of the Dielectric Science and Technology Division of the Electrochemical Society in Phoenix, Arizona, October 13-18, 1991. This series of symposia to address the subject of metallized plastics was initiated in 1988 and the premier symposium was held in Chicago, October 10-12, 1988, followed by the second event in Montreal, Canada, May 7-10, 1990. The rroceedings of these two symposia have been properly documented ,2. The third symposium was a huge success like the previous two events, and all this is testimonial to the brisk interest and high tempo of R&D activity in the fie14 of metallized plastics. This further bolsters our earlier thinking that there was a conspicuous need to hold symposia on this topic on a regular basis and the fourth is planned for May 16-21, 1993 in Honolulu, Hawaii. The study of metallized plastics constitutes an important human endeavor l and as pointed out earlier there are myriad applications of metallized plastics ranging from very commonplace to exotic. Also a survey of the recent literature will reveal that both the fundamental and applied aspects of metallized plastics are being pursued with great vigor.
The series Advances in Polymer Science presents critical reviews of the present and future trends in polymer and biopolymer science. It covers all areas of research in polymer and biopolymer science including chemistry, physical chemistry, physics, material science. The thematic volumes are addressed to scientists, whether at universities or in industry, who wish to keep abreast of the important advances in the covered topics. Advances in Polymer Science enjoy a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist. Review articles for the individual volumes are invited by the volume editors. Single contributions can be specially commissioned. Readership: Polymer scientists, or scientists in related fields interested in polymer and biopolymer science, at universities or in industry, graduate students.
This book presents the basic theories underlying x-ray and neutron scattering, as well as the various techniques that have been developed for their application to the study of polymers. The two scattering methods are discussed together from the beginning, so as to allow readers to gain a unified view of the scattering phenomena. The book is introductory and may be used as a textbook in polumer science class or for self-study by polymer scientists new in scattering techniques.
This book details all current techniques for converting bulk polymers into nano-size materials. The authors highlight various physical and chemical approaches for preparation of nano-size polymers. They describe the properties of these materials and their extensive potential commercial applications.
Advanced Polymeric Materials: Structure Property Relationships addresses the issues, characterization, durability, processing, and properties of state-of-the-art polymers. In chapters contributed by international experts-all in the vanguard of their respective specialties-it explores four distinct areas of the field that are now undergoing explosive growth: fiber reinforced composites, nanocomposites, polymer blends, and bioengineering. This welcome narrative treatment presents a unique, one-stop opportunity to discover the latest research on polymer modification from laboratories around the world.
Volume Four discusses the applications of radiation curing and provides a synopsis of the latest research in coatings; graphic arts; microelectronics; optical fibres; adhesives; 3D machining; membranes and holographic optical elements as well as considering the worldwide trends in the market.
The two volumes 165 and 166 Polyelectrolytes with Defined Molecular Architecture summarize recent progress in the field. The subjects comprise novel polyelectrolyte architectures including planar, cylindrical and spherical polyelectrolyte brushes as well as micelle, complex and membrane formation. Some solution properties such as conformation of flexible polyions, osmotic coefficients and electrophoretic properties are addressed along with recent progress in analytical theory and simulation.
Closing a gap in the literature, this is the first comprehensive
handbook on this modern and important polymer topic.
Smart ceramic coatings containing multifunctional components are now finding application in transportation and automotive industries, in electronics, and energy, sectors, in aerospace and defense, and in industrial goods and healthcare. Their wide application and stability in harsh environments are only possible due to the stability of the inorganic components that are used in ceramic coatings. Ceramic coatings are typically silicon nitride, chromia, hafnia, alumina, alumina-magnesia, silica, silicon carbide, titania, and zirconia-based compositions. The increased demand for these materials and their application in energy, transportation, and the automotive industry, are considered, to be the main drivers. Advanced Ceramic Coatings for Emerging Applications covers new developments in automotive, construction, electronic, space and defense industries. The book is one of four volumes that together provide a comprehensive resource in the field of Advanced Ceramic Coatings, also including titles covering: fundamentals, manufacturing, and classification; energy; and biomedical applications. The books will be extremely useful for academic and industrial researchers and practicing engineers who need to find reliable and up-to-date information about recent progresses and new developments in the field of advanced ceramic coatings. It will also be of value to early career scientists providing background knowledge to the field.
Handbook of Advanced Ceramic Coatings: Fundamentals, Manufacturing and Classification introduces ceramic coating materials, methods of fabrication, characterizations, the interaction between fillers, reinforcers, and environmental impact, and the functional classification of ceramic coatings. The book is one of four volumes that together provide a comprehensive resource in the field of Advanced Ceramic Coatings, also including titles covering energy, biomedical and emerging applications. These books will be extremely useful for academic and industrial researchers and practicing engineers who need to find reliable and up-to-date information about recent progresses and new developments in the field of advanced ceramic coatings. Smart ceramic coatings containing multifunctional components are now finding application in transportation and automotive industries, in electronics, and energy sectors, in aerospace and defense, and in industrial goods and healthcare. Their wide application and stability in harsh environments are only possible due to the stability of the inorganic components used. Ceramic coatings are typically silicon nitride, chromia, hafnia, alumina, alumina-magnesia, silica, silicon carbide, titania, and zirconia-based compositions. The increased demand for these materials and their application in energy, transportation, and the automotive industry, are considered, to be the main drivers.
This reference comprehensively details the analysis, synthesis, and chemistry of thermosetting polymers, blends, and networks and describes practical methods, processes, and formulations of specialized thermosetting polymer materials for industrial applications. Contains diagrams showcasing the structural transformations that may occur during a cure cycle Compiling research spanning two decades, Thermosetting Polymers is an in-depth volume suitable for polymer and materials scientists; plastics, chemical, and polymer engineers; experimental, physical, and polymer chemists; polymer, materials, chemical, and experimental physicists; and upper-level undergraduate and graduate students in these disciplines. |
![]() ![]() You may like...
Die Singende Hand - Versamelde Gedigte…
Breyten Breytenbach
Paperback
Large-Scale Optimization with…
Lorenz T. Biegler, Thomas F. Coleman, …
Hardcover
R3,002
Discovery Miles 30 020
Field and Service Robotics - Results of…
Marco Hutter, Roland Siegwart
Hardcover
R5,735
Discovery Miles 57 350
Architectural Intelligence - Selected…
Philip F. Yuan, Mike Xie, …
Hardcover
R4,392
Discovery Miles 43 920
Toward Robotic Socially Believable…
Anna Esposito, Lakhmi C. Jain
Hardcover
A Short Course on Operator Semigroups
Klaus-Jochen Engel, Rainer Nagel
Hardcover
R2,774
Discovery Miles 27 740
|