![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Plastics & polymers technology
Natural Polymers-Based Green Adsorbents for Water Treatment focuses on the recent development of novel polymeric adsorbents that are green and eco-friendly or biodegradable in nature. The book reviews the synthesis, properties and adsorption applications of natural and green polymer-based adsorbents. It discusses adsorption processes in biopolymer systems, remediation technologies developed to remove environmental pollutants, the usage of natural polymer-based cost-effective and green novel adsorbent materials for the removal of organic and inorganic contaminants, and the efficiency of functionalized polymers, nanosorbents, hydrogels, composites, graft copolymers in the sorption of various pollutants from the environment as well as from the industrial effluents. Researchers working on environmental remediation need a single book, where all data on natural and green adsorbents for water treatment are discussed comprehensively. Natural Polymers-Based Green Adsorbents for Water Treatment addresses this need by providing world-wide leading experts' observations and research. So, this book is a valuable reference for early-career scientist, academic researchers and graduate students in chemical engineering and material science.
Design and Manufacturing of Plastics Products: Integrating Conventional Methods and Innovative Technologies brings together detailed information on design, materials selection, properties, manufacturing, and the performance of plastic products, incorporating the utilization of the latest novel techniques and additive manufacturing technologies. The book integrates the design of molded products and conventional manufacturing and molding techniques with recent additive manufacturing techniques to produce performant products and cost-effective tools. Key areas of innovation are explained in detail, including hybrid molds, the integration of processing options with product properties and performance, and sustainability factors such as eco-design strategies, recycling, and lifecycle assessment. Other sections cover the development of plastics products, including design methodologies, design solutions specific to plastics, and design for re-use, as well as manufacturing and performance, with an emphasis on thermoplastic molding techniques, recent advances on plastics tooling, and the appraisal of the influence of processing options on product performance. This is a valuable resource to plastics engineers, design engineers, mold makers, and product or part designers across industries. It will also be of interest to researchers and advanced students in plastics engineering, polymer science, additive manufacturing and mechanical engineering.
Lignin-based Materials for Biomedical Applications: Preparation, Characterization, and Implementation explores the emerging area of lignin-based materials as a platform for advanced biomedical applications, guiding the reader from source through to implementation. The first part of the book introduces the basics of lignin, including extraction methods, chemical modifications, structure and composition, and properties that make lignin suitable for biomedical applications. In addition, structural characterization techniques are described in detail. The next chapters focus on the preparation of lignin-based materials for biomedical applications, presenting methodologies for lignin-based nanoparticles, hydrogels, aerogels, and nanofibers, and providing in-depth coverage of lignin-based materials with specific properties-including antioxidant properties, UV absorbing capability, antimicrobial properties, and colloidal particles with tailored properties-and applications, such as drug and gene delivery, and tissue engineering. Finally, future perspectives and possible new applications are considered. This is an essential reference for all those with an interest in lignin-based materials and their biomedical applications, including researchers and advanced students across bio-based polymers, polymer science, polymer chemistry, biomaterials, nanotechnology, materials science and engineering, drug delivery, and biomedical engineering, as well as industrial R&D and scientists involved with bio-based polymers, specifically for biomedical applications.
This book covers the topic of degradation phenomenon of natural fiber-based composites (NFC) under various aging conditions and proposes suitable solutions to improve the response of natural fiber-reinforced composite to aging conditions such as moisture, seawater, hygrothermal, and natural and accelerated weathering. The information provided by the book plays a vital role in the durability and shelf life of the composites as well as broadening the scope of outdoor application for natural fiber-based composites. The book will be appropriate for researchers and scientist who are interested in the application of natural fiber composites in various fields.
Tire Waste and Recycling takes a methodical approach to the recycling of tires, providing a detailed understanding on how to manage, process, and turn waste tires into valuable materials and industrial applications. Sections cover fundamental aspects such as tire use, composition, trends, legislation, the current global situation, the possibilities for moving towards a circular economy, lifecycle options, treatment methods, and opportunities for re-use, recycling and recovery. Subsequent sections of the book focus on specific technologies that enable the utilization of waste tires in the development of high value materials and advanced applications. Finally, the future of tire recycling is considered. This is an essential resource for scientists, R&D professionals, engineers and manufacturers working in the tire, rubber, waste, recycling, automotive and aerospace industries. In academia, the book will be of interest to researchers and advanced scientists across rubber science, polymer science, materials engineering, environmental science, chemistry and chemical engineering.
Chemistry, Manufacture and Applications of Natural Rubber, Second Edition presents the latest advances in the processing, properties and advanced applications of natural rubber (NR), drawing on state-of-the-art research in the field. Chapters cover manufacturing, processing and properties of natural rubber, describing biosynthesis, vulcanization for improved performance, strain-induced crystallization, self-reinforcement, rheology and mechanochemistry for processing, computer simulation of properties, scattering techniques and stabilizing agents. Applications covered include natural rubber, carbon allotropes, eco-friendly soft bio-composites using NR matrices and marine products, the use of NR for high functionality such as shape memory, NR for the tire industry, and natural rubber latex with advanced applications. This is an essential resource for academic researchers, scientists and (post)graduate students in rubber science, polymer science, materials science and engineering, and chemistry. In industry, this book enables professionals, R&D, and producers across the natural rubber, tire, rubber and elastomer industries, as well as across industries looking to use natural rubber products, to understand and utilize natural rubber for cutting-edge applications.
Molecular Characterization of Polymers presents a range of advanced and cutting-edge methods for the characterization of polymers at the molecular level, guiding the reader through theory, fundamentals, instrumentation, and applications, and supporting the end goal of efficient material selection and improved material performance. Each chapter focuses on a specific technique or family of techniques, including the different areas of chromatography, field flow fractionation, long chain branching, static and dynamic light scattering, mass spectrometry, NMR, X-Ray and neutron scattering, polymer dilute solution viscometry, microscopy, and vibrational spectroscopy. In each case, in-depth coverage explains how to successfully implement and utilize the technique. This practical resource is highly valuable to researchers and advanced students in polymer science, materials science, and engineering, and to those from other disciplines and industries who are unfamiliar with polymer characterization techniques.
The progress in polymer science is revealed in the chapters of
"Polymer Science: A Comprehensive Reference." In Volume 1, this is
reflected in the improved understanding of the properties of
polymers in solution, in bulk and in confined situations such as in
thin films. Volume 2 addresses new characterization techniques,
such as high resolution optical microscopy, scanning probe
microscopy and other procedures for surface and interface
characterization. Volume 3 presents the great progress achieved in
precise synthetic polymerization techniques for vinyl monomers to
control macromolecular architecture: the development of metallocene
and post-metallocene catalysis for olefin polymerization, new ionic
polymerization procedures, and atom transfer radical
polymerization, nitroxide mediated polymerization, and reversible
addition-fragmentation chain transfer systems as the most often
used controlled/living radical polymerization methods. Volume 4 is
devoted to kinetics, mechanisms and applications of ring opening
polymerization of heterocyclic monomers and cycloolefins (ROMP), as
well as to various less common polymerization techniques.
Polycondensation and non-chain polymerizations, including dendrimer
synthesis and various "click" procedures, are covered in Volume 5.
Volume 6 focuses on several aspects of controlled macromolecular
architectures and soft nano-objects including hybrids and
bioconjugates. Many of the achievements would have not been
possible without new characterization techniques like AFM that
allowed direct imaging of single molecules and nano-objects with a
precision available only recently. An entirely new aspect in
polymer science is based on the combination of bottom-up methods
such as polymer synthesis and molecularly programmed self-assembly
with top-down structuring such as lithography and surface
templating, as presented in Volume 7. It encompasses polymer and
nanoparticle assembly in bulk and under confined conditions or
influenced by an external field, including thin films,
inorganic-organic hybrids, or nanofibers. Volume 8 expands these
concepts focusing on applications in advanced technologies, e.g. in
electronic industry and centers on combination with top down
approach and functional properties like conductivity. Another type
of functionality that is of rapidly increasing importance in
polymer science is introduced in volume 9. It deals with various
aspects of polymers in biology and medicine, including the response
of living cells and tissue to the contact with biofunctional
particles and surfaces. The last volume is devoted to the scope and
potential provided by environmentally benign and green polymers, as
well as energy-related polymers. They discuss new technologies
needed for a sustainable economy in our world of limited resources.
The polymer industry raises a large number of relevant mathematical problems with respect to the quality of manufactured polymer parts. These include in particular questions about: - the production of the polymeric material from a monomer (based on the Ziegler-Natta catalytic process) - the crystallization kinetic of the polymer melt - the coupling of the crystallization process with the fluid dynamics of the manufacturing process such as extrusion, injection moulding of film blowing, etc.This book provides the first unified presentation of the mathematical modelling of polymerization, crystallization and extrusion of polymer melts, by means of advanced methods, presented in an accessible way for applied scientists and engineers. The present volume is the result of a long-term cooperation between different research teams in Europe within the ECMI Special Interest Group on "Polymers".
Macromolecular Engineering: Design, Synthesis and Application of Polymers explores the role of macromolecular engineering in the development of polymer systems with engineered structures that offer the desired combination of properties for advanced applications. This book is organized into sections covering theory and principles, science and technology, architectures and technologies, and applications, with an emphasis on the latest advances in techniques, materials, properties, and end uses - and including recently commercialized, or soon to be commercialized, designed polymer systems. The chapters are contributed by a group of leading figures who are actively researching in the field. This is an invaluable resource for researchers and scientists interested in polymer synthesis and design, across the fields of polymer chemistry, polymer science, plastics engineering, and materials science and engineering. In industry, this book supports engineers, R&D, and scientists working on polymer design for application areas such as biomedical and healthcare, automotive and aerospace, construction and consumer goods.
Polymers are permeable, whilst ceramics, glasses and metals are gener ally impermeable. This may seem a disadvantage in that polymeric containers may allow loss or contamination of their contents and aggressive substances such as water will diffuse into polymeric struc tures such as adhesive joints or fibre-reinforced composites and cause weakening. However, in some cases permeability is an advantage, and one particular area where this is so is in the use of polymers in drug delivery systems. Also, without permeable polymers, we would not enjoy the wide range of dyed fabrics used in clothing and furnishing. The fundamental reason for the permeability of polymers is their relatively high level of molecular motion, a factor which also leads to their high levels of creep in comparison with ceramics, glasses and metals. The aim of this volume is to examine some timely applied aspects of polymer permeability. In the first chapter basic issues in the mathema tics of diffusion are introduced, and this is followed by two chapters where the fundamental aspects of diffusion in polymers are presented. The following chapters, then, each examine some area of applied science where permeability is a key issue. Each chapter is reasonably self-contained and intended to be informative without frequent outside reference. This inevitably leads to some repetition, but it is hoped that this is not excessive."
Databook of Nucleating Agents, Second Edition gives engineers and materials scientists the information they need to increase the production rate, modify structure and morphology, and reduce the haze of polymeric products through proper selection of nucleating and clarifying agents. Chemical origin and related properties of nucleating agents are analyzed in general terms to highlight the differences in their properties, including the essential theoretical knowledge required for correct selection and use of nucleating and clarifying agents. This includes methods of chemical modification of nucleating agents and their deposition on suitable substrates, methods and results of dispersion of nucleating agents, influence of their concentration and cooling rate on final result and rate of crystallization, nucleation efficiency of different products and the reasons behind it, and generally accepted mechanisms of nucleation. The book also covers application aspects in different formulations. Patent literature and research papers are extensively reviewed for different applications, and polymer processing methods which require the use of nucleating agents are discussed, with an emphasis on the intricacies of using nucleating agents in different polymers and products.
Handbook of Antiblocking, Release, and Slip Additives, Fourth Edition, is the only comprehensive reference available on the subject of antiblocking, release, and slip additives, which are of high industrial importance. These additives are used to alter the properties and performances of polymers, minimizing adhesion, aiding separation, and improving the efficiency and cost of processing methods. These characteristics make additives an important topic across the spectrum of industry sectors that employ plastics and polymers. Fully updated to include the latest research and additives, the book considers all essential aspects of chemistry, physical properties, influence on properties of final products, formulations, methods of incorporation, analysis, and effects on health and environment. It also provides a complete analysis of existing literature and patents. Processing is discussed in detail, including coverage of types and concentrations, the effect of the additives on the process and product properties, advantages and disadvantages, and examples of formulations. This combination of data and performance analysis makes the book a vital source of information for industry research and development as well as academia.
Handbook of Nucleating Agents, Second Edition gives engineers and materials scientists the information they need to increase the production rate, modify structure and morphology, improve mechanical performance, and reduce the haze of polymeric products through proper selection of nucleating agents (and/or the so-called clarifying agents). The book analyzes the existing literature paying special attention to recent developments, and is divided into 14 chapters, each of which concentrates on essential performances of nucleating agents. Chemical origin and related properties of nucleating agents are analyzed in general terms to highlight the differences in their properties and the book also provides the most essential theoretical knowledge required for proper selection and use of nucleating and clarifying agents. This includes polymer crystallization with and without nucleating agents, parameters of crystallization, essential influences on the nucleation processes, the measures of nucleation efficiency, the mechanisms of nucleation, and the effective methods of dispersion of nucleating agents. Later chapters concentrate on the application aspects in different formulations, outlining nineteen polymer processing methods which require use of nucleating agents, forty different polymers which are known to use nucleating agents, and sixteen applied examples of commercial products with nucleating agents. The final three chapters discuss the effects of nucleating agents on physical and mechanical properties of materials, the most essential analytical techniques, and health and safety in use of nucleating agents.
Polymer modifications represent a valuable synthetic approach to unique polymer compositions, structure, and properties not readily available by the direct polymerization of monomers. Modified polymeric products already exist in the commercial world (modified celluloses, for example) so the approach is not new. However, it is an interesting and chaU nging opportunity to develop new materials for a variety of specialty applications using the "chemistry on polymers" approach. This book contains papers presented at the symposium on Polymer Modification held at the National American Chemical Society Meeting in Orlando, Florida, August, 1996. The chemistry presented is broad ranging, and includes grafting and chemical oxidation reactions, and many other chemical modifications. Hopefully, the book will be both a resource and an inspiration for the reader to develop new opportunities for his or her particular applications. CONTENTS SURF ACE MODIFICATIONS The Preparation of Methyl Methacrylate/Methacrylic Anhydride Copolymers from PMMA and Dialkyl Amines via Reaction Extrusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Michael P. Hallden-Abberton Grafting of Hindered Amine Groups on EPDM and Polyoctenamer via Photo- Hydroperoxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 J. Lacoste, S. Chmela, J. Pellet, and J. F. Pilichowski Reactive Gases as Reagents for Polymer Films Chemical Modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 J. F. Pilichowski, S. Commereuc, 1. Lukac, G. Teissedre, and J. Lacoste The Synthesis of Hydrophobe-Modified Hydroxyethyl Cellulose Polymers Using Phase Transfer Catalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Emmett M. Partain The Synthesis and Characterization of Polyesters Derived from L-Lactide and Variably-Sized Poly(Caprolactone) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Michael R. Lostocco and Samuel J.
Volume 4 of the Handbook of Colloid and Interface Science is a survey into the applications of colloids in a variety of fields, based on theories presented in Volumes 1 and 2. The Handbook provides a complete understanding of how colloids and interfaces can be applied in materials science, chemical engineering, and colloidal science. It is ideally suited as reference work for research scientists, universities, and industries.
Group Transfer Polymerization and Its Relationship to Other Living Systems (O.W. Webster). Fundamentals and Practical Aspects of 'Living' Radical Polymerization (K. Matyjaszewski). Living Carbocationic Copolymerizations: Part 1: The Constant Copolymer Composition Technique (III) (A. Nagy et al.). Living Carboncationic Copolymerizations: Part 2: Application of the Constant Copolymer Composition Technique for the Synthesis of Isobutylene/pMethylstyrene Copolymers (I. Orszagh et al.). Hexaarmed Polystyrene Stars from a Newly Designed Initiator of Carbocationic Polymerization (E. Cloutet et al.). Photoionization of Ionic Polymerizations (W. Schnabel). Synthesis and Photopolymerization of 1Propenyl Ether Monomers (J.V. Crivello et al.). Design of Macromolecular Prodrug Forms of Antitumor Agents (T. Ouchi). Transparent Multiphasic Oxygen Permeable Hydrogels Based on Siloxanic Statistical Copolymers (C. Roberts et al.). Preparation of Tubular Polymers from Cyclodextrins (A. Harada et al.). Multicomponent Polymers Containing Polyisobutylene via Multimode Polymerization (M.K. Mishra). 14 additional articles. Index.
The manufacture of polyolefins by metallocene catalysts represents a revolution in the polymer industry. The first, patent for a metallocene catalyst was filed in 1980 but it has been the last five years that have seen a dramatic increase in the volume of research into metallocenes and the maturing of metallocene technology. With contributions from leading experts from the US, Canada, Italy, Scandinavia, Germany and Japan, Metallocene-based Polyolefins gives comprehensive coverage of all areas of metallocene technology: catalyst structure, comonomer incorporation, polymerization mechanisms and conditions, reactor configurations, special properties, rheological and processing behaviour, comparison with conventional polyolefins and fields of application. An essential book for plastics engineers, polymer chemists, physicists, materials scientists and all those working in the plastics manufacturing and processing industries.
Introduction to Fluoropolymers, Second Edition, provides a comprehensive overview of the history, principles, properties, processing and applications of fluoropolymers, supporting their development and utilization in high-performance applications, components, and products. This second edition has been updated and expanded to include new in-depth chapters on manufacturing and applications of PTFE and melt processible fluoropolymers. The book begins by demonstrating the role of fluoropolymers in everyday life, before introducing the history and basic principles of fluoropolymers. This is followed by detailed coverage of the main fluoropolymer types. Properties and applications are illustrated by real-world examples as diverse as waterproof clothing, vascular grafts and coatings for aircraft interiors. The different applications of fluoropolymers show the benefits of a group of materials that are highly water-repellant and flame-retardant, with unrivalled lubrication properties and a high level of biocompatibility. Health and safety and environmental aspects are also covered throughout the book, with a final chapter examining safety, disposal, and recycling in detail. This book is an essential resource for anyone looking to understand or use fluoropolymer materials in their products. This includes engineers, product designers, manufacturers, scientists, researchers, and other professionals, across industries such as automotive, aerospace, medical devices, food and beverages, high performance apparel, oil and gas, renewable energy, solar photovoltaics, electronics and semiconductors, pharmaceuticals, and chemical processing. This is also a valuable introductory guide for academic researchers and advanced students in plastics engineering, polymer science, and materials science.
Polymer-Carbonaceous Filler-Based Composites for Wastewater Treatment serves as the first book to offer a concise treatment of the use of these materials in the treatment of wastewater. It provides a systematic and comprehensive account of recent developments and encompasses novel methods for the synthesis of carbonaceous derivatives-based fillers for polymer composites, their characterization techniques, and applications for the remediation of water contamination. This book seeks to: Introduces novel concepts in wastewater treatment with poly-carbonaceous composites Describes modern fabrication methods and characterization techniques Presents information on processing, safety, and disposal Discusses current research, future trends, and applications Filling the void for a one-stop reference book for researchers, this work includes contributions from leaders in the industry, academia, government, and private research institutions across the globe. Academics, researchers, scientists, engineers and students in the fields of materials and polymer engineering and wastewater treatment will benefit from this application-oriented book.
|
![]() ![]() You may like...
The Mechanics of Constitutive Modeling
Niels Saabye Ottosen, Matti Ristinmaa
Hardcover
R5,722
Discovery Miles 57 220
Retail Crime - International Evidence…
Vania Ceccato, Rachel Armitage
Hardcover
Global Crime Connections - Dynamics and…
Frank Pearce, Michael Woodiwiss
Hardcover
R2,886
Discovery Miles 28 860
Spectrophotometry, Volume 46 - Accurate…
Thomas Germer, Joanne C. Zwinkels, …
Hardcover
R4,271
Discovery Miles 42 710
Smart Technologies in Data Science and…
Sanjoy Kumar Saha, Paul S. Pang, …
Hardcover
R5,645
Discovery Miles 56 450
Modeling and Simulating Complex Business…
Zoumpolia Dikopoulou
Hardcover
R3,608
Discovery Miles 36 080
|