![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Plastics & polymers technology
3 In 1992 the annual world production of plastics reached 102 x 1()6m at a value of 3 over US$300 billion, while that of steel was 50 x1()6m ata value ofUS$l25 billion (Table 1. 1). Furthermore, from 1980 to 1990, plastics production increased by 62%, while thatofsteeldecreasedby 21%. Considering theunevenpolymerconsumption around theworld, polymerproductionwillhave toincreasebya factor often before currently recorded levels ofplastics sales in developed countries willbe universally reached. Polymers are the fastest growing structural materials. In addition, the polymer blend segment of the plastics industry increases at a rate about three times higher than thewhole. The aim of thisbook is to trace the historicalevolution of the polymer blends industry. Table 1. 1 World production of steel and plastics for 1992 Production Steel Plastics 410 102. Production volume (Mt/year) 3 Production volume (M(m )/year) 51 102 Production value (billion US$/year) 125 310 Growth from 1980to 1990 (%) -21 -1;62, . 121 Mt/year in 1996 A polymer (from the Greek poly = manyand meros = units) is a substancecomposed ofmacromoleculesbuiltby covalentlyjoiningatleast50 molecular segments, called mel'S. The word polymer was introduced in 1832 by Jons Jacob Berzelius for sub stances thatmayhaveidenticalchemicalcompositionbutdifferinmolecularweight (e. g., acetylene, benzene and styrene, having the formula CnH with n == 2,6and 8, n respectively). During the years 1859-1863, Louren o reported that condensation of ethylene glycol with ethylene dibromide resulted in a mixture of ethers, whose members, separated by distillation, were identified as HD-(C2l4D-)n-H with n == 2 to 6 (Stahl, 1981)."
This highlights ongoing research efforts on different aspects of polymer nanocomposites and explores their potentials to exhibit multi-functional properties. In this context, it addresses both fundamental and advanced concepts, while delineating the parameters and mechanisms responsible for these potentials. Aspects considered include embrittlement/toughness; wear/scratch behaviour; thermal stability and flame retardancy; barrier, electrical and thermal conductivity; and optical and magnetic properties. Further, the book was written as a coherent unit rather than a collection of chapters on different topics. As such, the results, analyses and discussions presented herein provide a guide for the development of a new class of multi-functional nanocomposites. Offering an invaluable resource for materials researchers and postgraduate students in the polymer composites field, they will also greatly benefit materials
Although plastics are extremely successful commercially, they would never reach acceptable performance standards either in properties or processing without the incorporation of additives. With the inclusion of additives, plastics can be used in a variety of areas competing directly with other materials, but there are still many challenges to overcome. Some additives are severely restricted by legislation, others interfere with each other-in short their effectiveness varies with circumstances. Plastics Additives explains these issues in an alphabetical format making them easily accessible to readers, enabling them to find specific information on a specific topic. Each additive is the subject of one or more articles, providing a suffinct account of each given topic. An international group of experts in additive and polymer science, from many world class companies and institutes, explain the recent rapid changes in additive technology. They cover novel additives (scorch inhibitors, compatibilizers, surface-modified particulates etc.), the established varieties (antioxidants, biocides, antistatic agents, nucleating agents, fillers, fibres, impact modifiers, plasticizers) and many others, the articles also consider environmental concerns, interactions between additives and legislative change. With a quick reference guide and introductory articles that provide the non-specialist and newcomer with relevant information, this reference book is essential reading for anyone concerned with plastics and additives.
Elastomer Blends and Composites: Principles, Characterization, Advances, and Applications presents the latest developments in natural rubber and synthetic rubber-based blends and nanocomposites, with a focus on current trends, future directions and state-of-the-art applications. The book introduces the fundamentals of natural rubber and synthetic rubbers, outlining synthesis, structure, properties, challenges and potential applications. This is followed by detailed coverage of compounding and formulations, manufacturing methods, and preparation of elastomer-based blends, composites, and nanocomposites. The next section of the book focuses on properties and characterization, examining elasticity, spectroscopy, barrier properties, and rheological, morphological, mechanical, thermal, and viscoelastic behavior, and more. This is a highly valuable resource for researchers and advanced students in rubber (or elastomer) science, polymer blends, composites, polymer science, and materials science and engineering, as well as engineers, technologists, and scientists working with rubber-based materials for advanced applications.
This book should be of interest to manufacturers of plastics products and fillers, plastics designers, engineers and polymer chemists.
In this book, the authors have assembled a systematic set of design parameters describing short and long term mechanical, thermal, electrical, fire and environmental performance, etc. for composites based primarily on continuous glass, aramid and carbon fibres in thermosetting and thermoplastic matrices.
Polymer-Carbonaceous Filler-Based Composites for Wastewater Treatment serves as the first book to offer a concise treatment of the use of these materials in the treatment of wastewater. It provides a systematic and comprehensive account of recent developments and encompasses novel methods for the synthesis of carbonaceous derivatives-based fillers for polymer composites, their characterization techniques, and applications for the remediation of water contamination. This book seeks to: Introduces novel concepts in wastewater treatment with poly-carbonaceous composites Describes modern fabrication methods and characterization techniques Presents information on processing, safety, and disposal Discusses current research, future trends, and applications Filling the void for a one-stop reference book for researchers, this work includes contributions from leaders in the industry, academia, government, and private research institutions across the globe. Academics, researchers, scientists, engineers and students in the fields of materials and polymer engineering and wastewater treatment will benefit from this application-oriented book.
Although polypropylene has been marketed since the 1950s, research and development in this area is still vigorous. The consumption of polypropylene over the years has been relatively high, mainly due to the steady improvement of its property profile. Polypropylene: Structures, Blends and Composites, in three separate volumes, reflects on the key factors which have contributed to the success of polypropylene, dealing with all aspects of structure-performance relationships relevant to thermoplastic polymers and related composites. Volume 1, Structure and Morphology, deals with polymorphism in polypropylene homo- and copolymers, where molecular and supermolecular structures are covered, and the processing-induced structure development of polypropylene, showing the interrelation between the processing-induced morphology and mechanical performance. Volume 2, Copolymers and Blends, contains comprehensive surveys of the nucleation and crystallisation behaviour of the related systems. It includes the development of morphology and its effects on rheological and mechanical properties of polypropylene-based alloys and blends and a review of polypropylene-based thermoplastic elastomers. Volume 3, Composites, gives a comprehensive overview of filled and reinforced systems with polypropylene as a matrix material, with the main emphasis on processing-structure-property-interrelationships. Chapters cover all aspects of particulate filled, chopped fibre-, fibre mat- and continuous fibre-reinforced composites. Interfacial phenomena, such as adhesion, wetting and interfacial crystallisation, are also included as important aspects of this subject.
The salient and versatile features of phenolic resins provide favorable comparisons between them and other thermosetting resins as well as thermoplastic products: thermal behavior; high strength level; long term thermal and mechanical stability; fire, smoke and low toxicity characteristics; electrical and thermal insulating capabilities; cost performance characteristics. The technical content of the book describes significant new phenolic resin chemistry, transformations and recent mechanistic pathways of resole and novolak cure. A vastly expanded treatment of selected application areas consists of wood composites, insulation/textile felts, molding compounds, paper/fabric impregnation, foundry, abrasives, friction and refractory. New applications with up-to-date developments include high performance and advanced composites, imaging/photoresist and carbon/graphite areas. Also included in detail: Standardized test methods important for ISO 9001 ff certification.
In August, 1996, the ACS Division of Polymeric Materials: Science and Engineering hosted a symposium on Interfacial Aspects of Multicomponent Polymer Materials at the Orlando, Florida, American Chemical Society meeting. Over 50 papers and posters were presented. The symposium proper was preceded by a one-day workshop, where the. basics of this relatively new field were developed. This edited book is a direct outcome of the symposium and workshop. Every object in the universe has surfaces and interfaces. A surface is defined as that part of a material in contact with either a gas or a vacuum. An interface is defined as that part of a material in contact with a condensed phase, be it liquid or solid. Surfaces of any substance are different from their interior. The appearance of surface or interfacial tension is one simple manifestation. Polymer blends and composites usually contain very finely divided phases, which are literally full of interfaces. Because interfaces are frequently weak mechanically, they pose special problems in the manufacture of strong, tough plastics, adhesives, elastomers, coatings, and fibers. This book provides a series of papers addressing this issue. Some papers delineate the nature of the interface both chemically and physically. The use of newer instrumental methods and new theories are described. Concepts of interdiffusion and entanglement are developed. Other papers describe state-of-the-art approaches to improving the interface, via graft and block copolymers, direct covalent bonding, hydrogen bonding, and more.
With conventional materials contributing greatly to environmental waste, biodegradable and natural composites have grown in interest and display low environmental impact at low cost across a wide range of applications. This book provides an overview of different biodegradable and natural composites and focuses on efforts into increasing their mechanical performance to extend their capabilities and applications.
Natural Polymers-Based Green Adsorbents for Water Treatment focuses on the recent development of novel polymeric adsorbents that are green and eco-friendly or biodegradable in nature. The book reviews the synthesis, properties and adsorption applications of natural and green polymer-based adsorbents. It discusses adsorption processes in biopolymer systems, remediation technologies developed to remove environmental pollutants, the usage of natural polymer-based cost-effective and green novel adsorbent materials for the removal of organic and inorganic contaminants, and the efficiency of functionalized polymers, nanosorbents, hydrogels, composites, graft copolymers in the sorption of various pollutants from the environment as well as from the industrial effluents. Researchers working on environmental remediation need a single book, where all data on natural and green adsorbents for water treatment are discussed comprehensively. Natural Polymers-Based Green Adsorbents for Water Treatment addresses this need by providing world-wide leading experts' observations and research. So, this book is a valuable reference for early-career scientist, academic researchers and graduate students in chemical engineering and material science.
Design and Manufacturing of Plastics Products: Integrating Conventional Methods and Innovative Technologies brings together detailed information on design, materials selection, properties, manufacturing, and the performance of plastic products, incorporating the utilization of the latest novel techniques and additive manufacturing technologies. The book integrates the design of molded products and conventional manufacturing and molding techniques with recent additive manufacturing techniques to produce performant products and cost-effective tools. Key areas of innovation are explained in detail, including hybrid molds, the integration of processing options with product properties and performance, and sustainability factors such as eco-design strategies, recycling, and lifecycle assessment. Other sections cover the development of plastics products, including design methodologies, design solutions specific to plastics, and design for re-use, as well as manufacturing and performance, with an emphasis on thermoplastic molding techniques, recent advances on plastics tooling, and the appraisal of the influence of processing options on product performance. This is a valuable resource to plastics engineers, design engineers, mold makers, and product or part designers across industries. It will also be of interest to researchers and advanced students in plastics engineering, polymer science, additive manufacturing and mechanical engineering.
Lignin-based Materials for Biomedical Applications: Preparation, Characterization, and Implementation explores the emerging area of lignin-based materials as a platform for advanced biomedical applications, guiding the reader from source through to implementation. The first part of the book introduces the basics of lignin, including extraction methods, chemical modifications, structure and composition, and properties that make lignin suitable for biomedical applications. In addition, structural characterization techniques are described in detail. The next chapters focus on the preparation of lignin-based materials for biomedical applications, presenting methodologies for lignin-based nanoparticles, hydrogels, aerogels, and nanofibers, and providing in-depth coverage of lignin-based materials with specific properties-including antioxidant properties, UV absorbing capability, antimicrobial properties, and colloidal particles with tailored properties-and applications, such as drug and gene delivery, and tissue engineering. Finally, future perspectives and possible new applications are considered. This is an essential reference for all those with an interest in lignin-based materials and their biomedical applications, including researchers and advanced students across bio-based polymers, polymer science, polymer chemistry, biomaterials, nanotechnology, materials science and engineering, drug delivery, and biomedical engineering, as well as industrial R&D and scientists involved with bio-based polymers, specifically for biomedical applications.
This book covers the topic of degradation phenomenon of natural fiber-based composites (NFC) under various aging conditions and proposes suitable solutions to improve the response of natural fiber-reinforced composite to aging conditions such as moisture, seawater, hygrothermal, and natural and accelerated weathering. The information provided by the book plays a vital role in the durability and shelf life of the composites as well as broadening the scope of outdoor application for natural fiber-based composites. The book will be appropriate for researchers and scientist who are interested in the application of natural fiber composites in various fields.
The first systematic reference on the topic with an emphasis on the characteristics and dimension of the reinforcement. This first of three volumes, authored by leading researchers in the field from academia, government, industry, as well as private research institutions around the globe, focuses on macro and micro composites. Clearly divided into three sections, the first offers an introduction to polymer composites, discussing the state of the art, new challenges, and opportunities of various polymer composite systems, as well as preparation and manufacturing techniques. The second part looks at macro systems, with an emphasis on fiber reinforced polymer composites, textile composites, and polymer hybrid composites. Likewise, the final section deals with micro systems, including micro particle reinforced polymer composites, the synthesis, surface modification and characterization of micro particulate fillers and flakes as well as filled polymer micro composites, plus applications and the recovery, recycling and life cycle analysis of synthetic polymeric composites.
Polymer Electrolytes for Energy Storage Devices, Volume I, offers a detailed explanation of recent progress and challenges in polymer electrolyte research for energy storage devices. The influence of these electrolyte properties on the performance of different energy storage devices is discussed in detail. Features: * Discusses a variety of energy storage systems and their workings and a detailed history of LIBs * Covers a wide range of polymer-based electrolytes including PVdF, PVdF-co-HFP, PAN, blend polymeric systems, composite polymeric systems, and polymer ionic liquid gel electrolytes * Provides a comprehensive review of biopolymer electrolytes for energy storage applications * Suitable for readers with experience in batteries as well as newcomers to the field This book will be invaluable to researchers and engineers working on the development of next-generation energy storage devices, including materials, chemical, electrical, and mechanical engineers, as well as those involved in related disciplines.
Tire Waste and Recycling takes a methodical approach to the recycling of tires, providing a detailed understanding on how to manage, process, and turn waste tires into valuable materials and industrial applications. Sections cover fundamental aspects such as tire use, composition, trends, legislation, the current global situation, the possibilities for moving towards a circular economy, lifecycle options, treatment methods, and opportunities for re-use, recycling and recovery. Subsequent sections of the book focus on specific technologies that enable the utilization of waste tires in the development of high value materials and advanced applications. Finally, the future of tire recycling is considered. This is an essential resource for scientists, R&D professionals, engineers and manufacturers working in the tire, rubber, waste, recycling, automotive and aerospace industries. In academia, the book will be of interest to researchers and advanced scientists across rubber science, polymer science, materials engineering, environmental science, chemistry and chemical engineering.
Chemistry, Manufacture and Applications of Natural Rubber, Second Edition presents the latest advances in the processing, properties and advanced applications of natural rubber (NR), drawing on state-of-the-art research in the field. Chapters cover manufacturing, processing and properties of natural rubber, describing biosynthesis, vulcanization for improved performance, strain-induced crystallization, self-reinforcement, rheology and mechanochemistry for processing, computer simulation of properties, scattering techniques and stabilizing agents. Applications covered include natural rubber, carbon allotropes, eco-friendly soft bio-composites using NR matrices and marine products, the use of NR for high functionality such as shape memory, NR for the tire industry, and natural rubber latex with advanced applications. This is an essential resource for academic researchers, scientists and (post)graduate students in rubber science, polymer science, materials science and engineering, and chemistry. In industry, this book enables professionals, R&D, and producers across the natural rubber, tire, rubber and elastomer industries, as well as across industries looking to use natural rubber products, to understand and utilize natural rubber for cutting-edge applications.
Molecular Characterization of Polymers presents a range of advanced and cutting-edge methods for the characterization of polymers at the molecular level, guiding the reader through theory, fundamentals, instrumentation, and applications, and supporting the end goal of efficient material selection and improved material performance. Each chapter focuses on a specific technique or family of techniques, including the different areas of chromatography, field flow fractionation, long chain branching, static and dynamic light scattering, mass spectrometry, NMR, X-Ray and neutron scattering, polymer dilute solution viscometry, microscopy, and vibrational spectroscopy. In each case, in-depth coverage explains how to successfully implement and utilize the technique. This practical resource is highly valuable to researchers and advanced students in polymer science, materials science, and engineering, and to those from other disciplines and industries who are unfamiliar with polymer characterization techniques.
The progress in polymer science is revealed in the chapters of
"Polymer Science: A Comprehensive Reference." In Volume 1, this is
reflected in the improved understanding of the properties of
polymers in solution, in bulk and in confined situations such as in
thin films. Volume 2 addresses new characterization techniques,
such as high resolution optical microscopy, scanning probe
microscopy and other procedures for surface and interface
characterization. Volume 3 presents the great progress achieved in
precise synthetic polymerization techniques for vinyl monomers to
control macromolecular architecture: the development of metallocene
and post-metallocene catalysis for olefin polymerization, new ionic
polymerization procedures, and atom transfer radical
polymerization, nitroxide mediated polymerization, and reversible
addition-fragmentation chain transfer systems as the most often
used controlled/living radical polymerization methods. Volume 4 is
devoted to kinetics, mechanisms and applications of ring opening
polymerization of heterocyclic monomers and cycloolefins (ROMP), as
well as to various less common polymerization techniques.
Polycondensation and non-chain polymerizations, including dendrimer
synthesis and various "click" procedures, are covered in Volume 5.
Volume 6 focuses on several aspects of controlled macromolecular
architectures and soft nano-objects including hybrids and
bioconjugates. Many of the achievements would have not been
possible without new characterization techniques like AFM that
allowed direct imaging of single molecules and nano-objects with a
precision available only recently. An entirely new aspect in
polymer science is based on the combination of bottom-up methods
such as polymer synthesis and molecularly programmed self-assembly
with top-down structuring such as lithography and surface
templating, as presented in Volume 7. It encompasses polymer and
nanoparticle assembly in bulk and under confined conditions or
influenced by an external field, including thin films,
inorganic-organic hybrids, or nanofibers. Volume 8 expands these
concepts focusing on applications in advanced technologies, e.g. in
electronic industry and centers on combination with top down
approach and functional properties like conductivity. Another type
of functionality that is of rapidly increasing importance in
polymer science is introduced in volume 9. It deals with various
aspects of polymers in biology and medicine, including the response
of living cells and tissue to the contact with biofunctional
particles and surfaces. The last volume is devoted to the scope and
potential provided by environmentally benign and green polymers, as
well as energy-related polymers. They discuss new technologies
needed for a sustainable economy in our world of limited resources.
|
![]() ![]() You may like...
Social Networks: Models of Information…
Alexander G. Chkhartishvili, Dmitry A. Gubanov, …
Hardcover
R2,873
Discovery Miles 28 730
CMOS Circuits for Piezoelectric Energy…
Thorsten Hehn, Yiannos Manoli
Hardcover
Algal Biorefineries and the Circular…
Sanjeet Mehariya, Shashi Kant Bhatia, …
Hardcover
R8,032
Discovery Miles 80 320
Mosquitopia - The Place of Pests in a…
Marcus Hall, Dan Tamir
Paperback
R1,250
Discovery Miles 12 500
3D Imaging Technologies-Multidimensional…
Lakhmi C. Jain, Roumen Kountchev, …
Hardcover
R6,996
Discovery Miles 69 960
|