![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Plastics & polymers technology
In this book, the authors have assembled a systematic set of design parameters describing short and long term mechanical, thermal, electrical, fire and environmental performance, etc. for composites based primarily on continuous glass, aramid and carbon fibres in thermosetting and thermoplastic matrices.
Although polypropylene has been marketed since the 1950s, research and development in this area is still vigorous. The consumption of polypropylene over the years has been relatively high, mainly due to the steady improvement of its property profile. Polypropylene: Structures, Blends and Composites, in three separate volumes, reflects on the key factors which have contributed to the success of polypropylene, dealing with all aspects of structure-performance relationships relevant to thermoplastic polymers and related composites. Volume 1, Structure and Morphology, deals with polymorphism in polypropylene homo- and copolymers, where molecular and supermolecular structures are covered, and the processing-induced structure development of polypropylene, showing the interrelation between the processing-induced morphology and mechanical performance. Volume 2, Copolymers and Blends, contains comprehensive surveys of the nucleation and crystallisation behaviour of the related systems. It includes the development of morphology and its effects on rheological and mechanical properties of polypropylene-based alloys and blends and a review of polypropylene-based thermoplastic elastomers. Volume 3, Composites, gives a comprehensive overview of filled and reinforced systems with polypropylene as a matrix material, with the main emphasis on processing-structure-property-interrelationships. Chapters cover all aspects of particulate filled, chopped fibre-, fibre mat- and continuous fibre-reinforced composites. Interfacial phenomena, such as adhesion, wetting and interfacial crystallisation, are also included as important aspects of this subject.
In August, 1996, the ACS Division of Polymeric Materials: Science and Engineering hosted a symposium on Interfacial Aspects of Multicomponent Polymer Materials at the Orlando, Florida, American Chemical Society meeting. Over 50 papers and posters were presented. The symposium proper was preceded by a one-day workshop, where the. basics of this relatively new field were developed. This edited book is a direct outcome of the symposium and workshop. Every object in the universe has surfaces and interfaces. A surface is defined as that part of a material in contact with either a gas or a vacuum. An interface is defined as that part of a material in contact with a condensed phase, be it liquid or solid. Surfaces of any substance are different from their interior. The appearance of surface or interfacial tension is one simple manifestation. Polymer blends and composites usually contain very finely divided phases, which are literally full of interfaces. Because interfaces are frequently weak mechanically, they pose special problems in the manufacture of strong, tough plastics, adhesives, elastomers, coatings, and fibers. This book provides a series of papers addressing this issue. Some papers delineate the nature of the interface both chemically and physically. The use of newer instrumental methods and new theories are described. Concepts of interdiffusion and entanglement are developed. Other papers describe state-of-the-art approaches to improving the interface, via graft and block copolymers, direct covalent bonding, hydrogen bonding, and more.
Chemical Resistance of Thermoplastics is a unique reference work,
providing a comprehensive cross-referenced compilation of chemical
resistance data that explains the effect of thousands of exposure
media on the properties and characteristics of commodity
thermoplastics. The two volumes cover thermoplastics grouped within
the following parts: The single most comprehensive data source covering the chemical resistance properties of high consumption volume commercial thermoplastics A rating number is provided for each test, summarizing the effect of the exposure medium on the given thermoplastic The data covered in the two volumes is also provided as an online publication offering extended navigation and search features
This volume discusses the role of ZIF-8 composites in water decontamination as an adsorbent and photocatalyst. Metal-organic frameworks (MOFs) are advanced porous materials and are promising adsorbents with facile modifications, high specific surface area, controllable porosity, and tailored surface properties. Water pollution is a major concern and has endangered human health. Recently, researchers have designed MOFs for use in remediation.
There has been growing interest in heterogeneous systems as the contribution they make to polymer science and technology increases. Under heterogeneous conditions, the preparation and modification of polymers may yield products very different in structure, properties and chemistry from those formed in solution under analogous conditions. Heterogeneous Modification of Polymers covers the basic principles relevant to such systems, outlines the prospective developments leading to novel products and technologies and discusses both surface as well as the heterogeneously conducted bulk modifications of polymeric materials. A need has arisen for a volume which makes the distinction between homogeneous systems and is devoted entirely to heterogeneity and the specific characterizations of these reactions. Professor Jagur-Grodzinski's book meets this need and will be invaluable to researchers and postgraduate students in this area of polymer science.
Lignin Chemistry and Application systematically discusses the structure, physical and chemical modification of lignin, along with its application in the field of chemicals and materials. It presents the history of lignin chemistry and lignin-modified materials, describes recent progresses, applications and studies, and prospects the development direction of high value applications of lignin in the field of material science. In addition to covering the basic theories and technologies relating to the research and application of lignin in polymer chemistry and materials science, the book also summarizes the latest applications in rubber, engineering plastics, adhesives, films and hydrogels.
This volume discusses the role of MOFs in removal of pharmaceutical pollutants. Metal-organic frameworks (MOFs) are advanced porous materials and are promising adsorbents with facile modifications, high specific surface area, controllable porosity, and tailored surface properties. Pharmaceutical pollution is an issue of concern due to its effects on environment. Recently, researchers have designed MOFs for use in remediation.
With conventional materials contributing greatly to environmental waste, biodegradable and natural composites have grown in interest and display low environmental impact at low cost across a wide range of applications. This book provides an overview of different biodegradable and natural composites and focuses on efforts into increasing their mechanical performance to extend their capabilities and applications.
The progress in polymer science is revealed in the chapters of
"Polymer Science: A Comprehensive Reference." In Volume 1, this is
reflected in the improved understanding of the properties of
polymers in solution, in bulk and in confined situations such as in
thin films. Volume 2 addresses new characterization techniques,
such as high resolution optical microscopy, scanning probe
microscopy and other procedures for surface and interface
characterization. Volume 3 presents the great progress achieved in
precise synthetic polymerization techniques for vinyl monomers to
control macromolecular architecture: the development of metallocene
and post-metallocene catalysis for olefin polymerization, new ionic
polymerization procedures, and atom transfer radical
polymerization, nitroxide mediated polymerization, and reversible
addition-fragmentation chain transfer systems as the most often
used controlled/living radical polymerization methods. Volume 4 is
devoted to kinetics, mechanisms and applications of ring opening
polymerization of heterocyclic monomers and cycloolefins (ROMP), as
well as to various less common polymerization techniques.
Polycondensation and non-chain polymerizations, including dendrimer
synthesis and various "click" procedures, are covered in Volume 5.
Volume 6 focuses on several aspects of controlled macromolecular
architectures and soft nano-objects including hybrids and
bioconjugates. Many of the achievements would have not been
possible without new characterization techniques like AFM that
allowed direct imaging of single molecules and nano-objects with a
precision available only recently. An entirely new aspect in
polymer science is based on the combination of bottom-up methods
such as polymer synthesis and molecularly programmed self-assembly
with top-down structuring such as lithography and surface
templating, as presented in Volume 7. It encompasses polymer and
nanoparticle assembly in bulk and under confined conditions or
influenced by an external field, including thin films,
inorganic-organic hybrids, or nanofibers. Volume 8 expands these
concepts focusing on applications in advanced technologies, e.g. in
electronic industry and centers on combination with top down
approach and functional properties like conductivity. Another type
of functionality that is of rapidly increasing importance in
polymer science is introduced in volume 9. It deals with various
aspects of polymers in biology and medicine, including the response
of living cells and tissue to the contact with biofunctional
particles and surfaces. The last volume is devoted to the scope and
potential provided by environmentally benign and green polymers, as
well as energy-related polymers. They discuss new technologies
needed for a sustainable economy in our world of limited resources.
Polymers are permeable, whilst ceramics, glasses and metals are gener ally impermeable. This may seem a disadvantage in that polymeric containers may allow loss or contamination of their contents and aggressive substances such as water will diffuse into polymeric struc tures such as adhesive joints or fibre-reinforced composites and cause weakening. However, in some cases permeability is an advantage, and one particular area where this is so is in the use of polymers in drug delivery systems. Also, without permeable polymers, we would not enjoy the wide range of dyed fabrics used in clothing and furnishing. The fundamental reason for the permeability of polymers is their relatively high level of molecular motion, a factor which also leads to their high levels of creep in comparison with ceramics, glasses and metals. The aim of this volume is to examine some timely applied aspects of polymer permeability. In the first chapter basic issues in the mathema tics of diffusion are introduced, and this is followed by two chapters where the fundamental aspects of diffusion in polymers are presented. The following chapters, then, each examine some area of applied science where permeability is a key issue. Each chapter is reasonably self-contained and intended to be informative without frequent outside reference. This inevitably leads to some repetition, but it is hoped that this is not excessive."
Polymer modifications represent a valuable synthetic approach to unique polymer compositions, structure, and properties not readily available by the direct polymerization of monomers. Modified polymeric products already exist in the commercial world (modified celluloses, for example) so the approach is not new. However, it is an interesting and chaU nging opportunity to develop new materials for a variety of specialty applications using the "chemistry on polymers" approach. This book contains papers presented at the symposium on Polymer Modification held at the National American Chemical Society Meeting in Orlando, Florida, August, 1996. The chemistry presented is broad ranging, and includes grafting and chemical oxidation reactions, and many other chemical modifications. Hopefully, the book will be both a resource and an inspiration for the reader to develop new opportunities for his or her particular applications. CONTENTS SURF ACE MODIFICATIONS The Preparation of Methyl Methacrylate/Methacrylic Anhydride Copolymers from PMMA and Dialkyl Amines via Reaction Extrusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Michael P. Hallden-Abberton Grafting of Hindered Amine Groups on EPDM and Polyoctenamer via Photo- Hydroperoxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 J. Lacoste, S. Chmela, J. Pellet, and J. F. Pilichowski Reactive Gases as Reagents for Polymer Films Chemical Modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 J. F. Pilichowski, S. Commereuc, 1. Lukac, G. Teissedre, and J. Lacoste The Synthesis of Hydrophobe-Modified Hydroxyethyl Cellulose Polymers Using Phase Transfer Catalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Emmett M. Partain The Synthesis and Characterization of Polyesters Derived from L-Lactide and Variably-Sized Poly(Caprolactone) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Michael R. Lostocco and Samuel J.
This book presents both established and emerging technologies which show the immense possibilities of using non-traditional fillers and stiffening agents in the plastics industry. After an introduction to basic polymer chemistry, a range of non-petroleum-based fillers and stiffening agents for polymer products are identified and their optimal applications given.
The polymer industry raises a large number of relevant mathematical problems with respect to the quality of manufactured polymer parts. These include in particular questions about: - the production of the polymeric material from a monomer (based on the Ziegler-Natta catalytic process) - the crystallization kinetic of the polymer melt - the coupling of the crystallization process with the fluid dynamics of the manufacturing process such as extrusion, injection moulding of film blowing, etc.This book provides the first unified presentation of the mathematical modelling of polymerization, crystallization and extrusion of polymer melts, by means of advanced methods, presented in an accessible way for applied scientists and engineers. The present volume is the result of a long-term cooperation between different research teams in Europe within the ECMI Special Interest Group on "Polymers".
Volume 4 of the Handbook of Colloid and Interface Science is a survey into the applications of colloids in a variety of fields, based on theories presented in Volumes 1 and 2. The Handbook provides a complete understanding of how colloids and interfaces can be applied in materials science, chemical engineering, and colloidal science. It is ideally suited as reference work for research scientists, universities, and industries.
Gellan Gum as a Biomedical Polymer details key topics and fundamental aspects of gellan gum and its biomedical applications in drug delivery, proteins and peptides delivery, cell delivery, tissue engineering, wound dressings and enzyme immobilizations in developing high quality products. Sections introduce gellan gum, its source, production and gelation mechanism, discuss biomedical materials, and provides ways it can be used for biomedical applications. The book also examines the used of gellan gum as pharmaceutical excipients for drug delivery. Future developments and challenges round out the book’s coverage. With contributions for an international group of experts, this book is a useful reference for scientists, researchers and those in industry engaged in biomedical product development using natural polysaccharides.
The book comprehensively covers the different topics of graphene based biopolymer and nanocomposites, mainly synthesis methods for the composite materials, various characterization techniques to study the superior properties and insights on potential advanced applications.The book will address and rectify the complications of using plastics that are non-degradable and has abhorrent impact on environment. The limitations of properties of biopolymer can be vanquished by employing graphene as a nanomaterial. Outstanding properties of graphene in accordance with biopolymer can be utilized to develop applications like water treatment, tissue engineering, photo-catalysts, super-absorbents. This is a useful reference source for both engineers and researchers working in composite materials science as well as the students attending materials science, physics, chemistry, and engineering courses.
The manufacture of polyolefins by metallocene catalysts represents a revolution in the polymer industry. The first, patent for a metallocene catalyst was filed in 1980 but it has been the last five years that have seen a dramatic increase in the volume of research into metallocenes and the maturing of metallocene technology. With contributions from leading experts from the US, Canada, Italy, Scandinavia, Germany and Japan, Metallocene-based Polyolefins gives comprehensive coverage of all areas of metallocene technology: catalyst structure, comonomer incorporation, polymerization mechanisms and conditions, reactor configurations, special properties, rheological and processing behaviour, comparison with conventional polyolefins and fields of application. An essential book for plastics engineers, polymer chemists, physicists, materials scientists and all those working in the plastics manufacturing and processing industries.
This book covers the topic of degradation phenomenon of natural fiber-based composites (NFC) under various aging conditions and proposes suitable solutions to improve the response of natural fiber-reinforced composite to aging conditions such as moisture, seawater, hygrothermal, and natural and accelerated weathering. The information provided by the book plays a vital role in the durability and shelf life of the composites as well as broadening the scope of outdoor application for natural fiber-based composites. The book will be appropriate for researchers and scientist who are interested in the application of natural fiber composites in various fields. |
You may like...
Resonance - Long-Lived Waves
Leonard Dobrzynski, Housni Al-Wahsh, …
Paperback
R3,925
Discovery Miles 39 250
Polyurea - Synthesis, Properties…
Pooria Pasbakhsh, Damith Mohotti, …
Paperback
R4,684
Discovery Miles 46 840
Fundamental Biomaterials: Polymers
Sabu Thomas, Preetha Balakrishnan, …
Paperback
3D and 4D Printing of Polymer…
Kishor Kumar Sadasivuni, Kalim Deshmukh, …
Paperback
R5,549
Discovery Miles 55 490
Recycling of Polyethylene Terephthalate…
Sabu Thomas, Ajay Vasudeo Rane, …
Hardcover
R3,977
Discovery Miles 39 770
|