![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Plastics & polymers technology
This new volume presents leading-edge research in the rapidly changing and evolving field of polymer science as well as on chemical processing. The topics in the book reflect the diversity of research advances in the production and application of modern polymeric materials and related areas, focusing on the preparation, characterization, and applications of polymers. Also covered are various manufacturing techniques. The book helps to fill the gap between theory and practice in industry. The book introduces current state-of-the-art technology in modern materials with an emphasis on the rapidly growing technologies. It takes a unique approach by presenting specific materials and then progresses into a discussion of the ways in which these materials and processes are integrated into today's functioning manufacturing industry. Readers will also discover how material properties relate to the process variables in a given process as well as how to perform quantitative engineering analysis of manufacturing processes.
This new book explores the consideration of relationships that connect the structural and basic mechanical properties of polymeric mediums within the frameworks of fractal analysis with cluster model representations attraction. Incidentally, the choice of any structural model of medium or their combinations is defined by expediency and further usage convenience only. This book presents leading-edge research in this rapidly changing and evolving field. The book presents descriptions of the main reactions of high-molecular substances within the frameworks of fractal analysis and irreversible aggregation models. Synergetics and percolation theory were also used. In spite of the enormous number of papers dealing with the influence of the medium on the rate of chemical reactions (including synthesis of polymers), no strict quantitative theory capable of "universal" application has been put forward up until now. It is now possible to describe the relationship between the reaction rate constants and the equilibrium constants with the nature of the medium in which the reactions take place by means of a single equation. This important book for the first time gives structural and physical grounds of polymers synthesis and curing, and the fractal analysis is used for this purpose. This new book: * Highlights some important areas of current interest in polymer products and chemical processes * Focuses on topics with more advanced methods * Emphasizes precise mathematical development and actual experimental details * Analyzes theories to formulate and prove the physicochemical principles * Provides an up-to-date and thorough exposition of the present state of the art of complex polymeric materials
This book provides a vast amount of information on new approaches, limitations, and control on current polymers and chemicals complexity of various origins, on scales ranging from single molecules and nano-phenomena to macroscopic chemicals. Starting with a detailed introduction, the book is comprised of chapters that survey the current progress in particular research fields. The chapters, prepared by leading international experts, yield together a fascinating picture of a rapidly developing research discipline that brings chemical technology and polymers to new frontiers.
This book covers a broad range of polymeric materials and provides industry professionals and researchers in polymer science and technology with a single, comprehensive book summarizing all aspects involved in the functional materials production chain. This volume presents the latest developments and trends in advanced polymer materials and structures. It discusses the developments of advanced polymers and respective tools to characterize and predict the material properties and behavior. This book has an important role in advancing polymer materials in macro and nanoscale. Its aim is to provide original, theoretical, and important experimental results that use non-routine methodologies. It also includes chapters on novel applications of more familiar experimental techniques and analyses of composite problems that indicate the need for new experimental approaches. This new book: * Provides a collection of articles that highlight some important areas of current interest in key polymeric materials and technology * Gives an up-to-date and thorough exposition of the present state of the art of key polymeric materials and technology * Describes the types of techniques now available to the engineers and technicians and discusses their capabilities, limitations, and applications * Provides a balance between materials science and chemical aspects, basic and applied research * Focuses on topics with more advanced methods * Emphasizes precise mathematical development and actual experimental details * Explains modification methods for changing of different materials properties
The proposed book focusses on the theme of failure of polymer composites, focusing on vital aspects of enhancing failure resistance, constituents and repair including associated complexities. It discusses characterization and experimentation of the composites under loading with respect to the specific environment and applications. Further, it includes topics as green composites, advanced materials and composite joint failure, buckling failure, and fiber-metal composite failure. It explains preparation, applications of composites for weight sensitive applications, leading to potential applications and formulations, fabrication of polymer products based on bio-resources. Provides exhaustive understanding of failure and fatigue of polymer composites Covers the failure of fiber reinforced polymer composites, composite joint failure, fiber-metal composite, and laminate failure Discusses how to enhance the resistance against failure of the polymer composites Provides input to industry related and academic orientated research problems Represents an organized perspective and analysis of materials processing, material design, and their failure under loading This book is aimed at researchers, graduate students in composites, fiber reinforcement, failure mechanism, materials science, and mechanical engineering.
This book presents the application of Polymer-Silica Based Composites in the Construction Industry providing the fundamental framework and knowledge needed for the sustainable and efficient use of these composites as building and structural materials. It also includes characterization of prepared materials to ascertain mechanical, chemical, and physical properties and analyses results obtained using similar methods. Topics such as life cycle analysis of plastics, application of plastics in construction and elimination of plastic wastes are also discussed. The book also provides information on the outlook and competitiveness of emerging composites materials. Covers theory, preparation and characterizations of polymer-silica based composites for green construction. Discusses technology, reliability, manufacturing cost and environmental impact. Reviews the classification, application, and processing of polymer-silica composites. Gives a deeper analysis on the various tests carried out on polymer-silica composite. Highlights role of such composites in the Industry 4.0 and emerging technologies. This book is aimed at graduate students and researchers in civil engineering, built environment, construction materials, and materials science.
Viscoelastic behavior reflects the combined viscous and elastic responses, under mechanical stress, of materials which are intermediate between liquids and solids in character. Polymers—the basic materials of the rubber and plastic industries and important to the textile, petroleum, automobile, paper, and pharmaceutical industries as well—exhibit viscoelasticity to a pronounced degree. Their viscoelastic properties determine the mechanical performance of the final products of these industries, and also the success of processing methods at intermediate stages of production. Viscoelastic Properties of Polymers examines, in detail, the effects of the many variables on which the basic viscoelastic properties depend. These include temperature, pressure, and time; polymer chemical composition, molecular weight and weight distribution, branching and crystallinity; dilution with solvents or plasticizers; and mixture with other materials to form composite systems. With guidance by molecular theory, the dependence of viscoelastic properties on these variables can be simplified by introducing certain ancillary concepts such as the fractional free volume, the monomeric friction coefficient, and the spacing between entanglement loci, to provide a qualitative understanding and in many cases a quantitative prediction of how to achieve desired results. The phenomenological theory of viscoelasticity—which permits interrelation of the results of different types of experiments—is presented first, with many useful approximation procedures for calculations given. A wide variety of experimental methods is then described, with critical evaluation of their applicability to polymeric materials of different consistencies and in different regions of the time scale (or, for oscillating deformations, the frequency scale). A review of the present state of molecular theory follows, so that viscoelasticity can be related to the motions of flexible polymer molecules and their entanglements and network junctions. The dependence of viscoestic properties on temperature and pressure, and its descriptions using reduced variables, are discussed in detail. Several chapters are then devoted to the dependence of viscoelastic properties on chemical composition, molecular weight, presence of diluents, and other features, for several characteristic classes of polymer materials. Finally, a few examples are given to illustrate the many potential applications of these principles to practical problems in the processing and use of rubbers, plastics, and fibers, and in the control of vibration and noise. The third edition has been brought up to date to reflect the important developments, in a decade of exceptionally active research, which have led to a wider use of polymers, and a wider recognition of the importance and range of application of viscoelastic properties. Additional data have been incorporated, and the book’s chapters on dilute solutions, theory of undiluted polymers, plateau and terminal zones, cross-linked polymers, and concentrated solutions have been extensively rewritten to take into account new theories and new experimental results. Technical managers and research workers in the wide range of industries in which polymers play an important role will find that the book provides basic information for practical applications, and graduate students in chemistry and engineering will find, in its illustrations with real data and real numbers, an accessible introduction to the principles of viscoelasticity.
Among electrode materials, inorganic materials have received vast consideration owing to their redox chemistry, chemical stability, high electrochemical performance, and high-power applications. These exceptional properties enable inorganic-based materials to find application in high-performance energy conversion and storage. The current advances in nanotechnology have uncovered novel inorganic materials by various strategies and their different morphological features may serve as a rule for future supercapacitor electrode design for efficient supercapacitor performance. Inorganic Nanomaterials for Supercapacitor Design depicts the latest advances in inorganic nanomaterials for supercapacitor energy storage devices. Key Features: ? Provides an overview on the supercapacitor application of inorganic-based materials. ? Describes the fundamental aspects, key factors, advantages, and challenges of inorganic supercapacitors. ? Presents up-to-date coverage of the large, rapidly growing, and complex literature on inorganic supercapacitors. ? Surveys current applications in supercapacitor energy storage. ? Explores the new aspects of inorganic materials and next-generation supercapacitor systems.
Explores the nature of relaxation phenomena in polymers on the basis of time-temperature equivalence. Its role in the physical and mechanical behavior of polymers materials and fundamentals of thermoplastics processing are discussed. Four appendixes detail thermo-mechanical methods to study relaxation in polymers, structure of both amorphous and semi-crystalline polymers, and unified approach to describe deformation of polymeric materials.
Conducting polymers are organic polymers which contain conjugation along the polymer backbone that conduct electricity. Conducting polymers are promising materials for energy storage applications because of their fast charge-discharge kinetics, high charge density, fast redox reaction, low-cost, ease of synthesis, tunable morphology, high power capability and excellent intrinsic conductivity compared with inorganic-based materials. Conducting Polymers-Based Energy Storage Materials surveys recent advances in conducting polymers and their composites addressing the execution of these materials as electrodes in electrochemical power sources. Key Features: Provides an overview on the conducting polymer material properties, fundamentals and their role in energy storage applications. Deliberates cutting-edge energy storage technology based on synthetic metals (conducting polymers) Covers current applications in next-generation energy storage devices. Explores the new aspects of conducting polymers with processing, tunable properties, nanostructures and engineering strategies of conducting polymers for energy storage. Presents up-to-date coverage of a large, rapidly growing and complex conducting polymer literature on all-types electrochemical power sources. This book is an invaluable guide for students, professors, scientists, and R&D industrial specialists working in the field of advanced science, nanodevices, flexible electronics, and energy science.
Chitin is one of the most important biopolymers, synthesized by an enormous number of living organisms and is a promising bioactive polymer for food packaging applications due to its functional properties. This book focuses on composition, properties, characterization, and theoretical approach of chitin and chitosan bio-composites. It describes the most recent studies concerning chitin and chitosan-based films and gives an overview about future trends regarding the industrial applications of chitin and chitosan for food packaging purposes. This book is especially useful for researchers in the fields of bionanocomposites, especially those with an interest in packaging applications.
Smart materials are the way of the future in a variety of fields, from biomedical engineering and chemistry to nanoscience, nanotechnology, and robotics. Featuring an interdisciplinary approach to smart materials and structures, this second edition of Artificial Muscles: Applications of Advanced Polymeric Nanocomposites has been fully updated to thoroughly review the latest knowledge of ionic polymeric conductor nanocomposites (IPCNCs), including ionic polymeric metal nanocomposites (IPMNCs) as biomimetic distributed nanosensors, nanoactuators, nanotransducers, nanorobots, artificial muscles, and electrically controllable intelligent polymeric network structures. Authored by one of the founding fathers of the field, the book introduces fabrication and manufacturing methods of several electrically and chemically active ionic polymeric sensors, actuators, and artificial muscles, as well as a new class of electrically active polymeric nanocomposites and artificial muscles. It also describes a few apparatuses for modeling and testing various artificial muscles to show the viability of chemoactive and electroactive muscles. It presents the theories, modeling, and numerical simulations of ionic polymeric artificial muscles' electrodynamics and chemodynamics and features current industrial and medical applications of IPMNCs. By covering the fabrication techniques of and novel developments in advanced polymeric nanocomposites, this second edition continues to provides an accessible yet solid foundation to the subject while stimulating further research. Key features: Fully up to date with the latest cutting-edge discoveries in the field Authored by a world expert in the subject area Explores the exciting and growing topic of smart materials in medicine Mohsen Shahinpoor is Professor of Mechanical Engineering at the University of Maine and a leading expert in artificial muscles.
This book details the use of conducting polymers and their composites in supercapacitors, batteries, photovoltaics, and fuel cells, nearly covering the entire spectrum of energy area under one title. Conducting Polymers for Advanced Energy Applications covers a range of advanced materials based on conducting polymers, the fundamentals, and the chemistry behind these materials for energy applications. FEATURES Covers materials, chemistry, various synthesis approaches, and the properties of conducting polymers and their composites Discusses commercialization and markets and elaborates on advanced applications Presents an overview and the advantages of using conducting polymers and their composites for advanced energy applications Describes a variety of nanocomposites, including metal oxides, chalcogenides, graphene, and materials beyond graphene Offers the fundamentals of electrochemical behavior This book provides a new direction for scientists, researchers, and students in materials science and polymer chemistry who seek to better understand the chemistry behind conducting polymers and improve their performance for use in advanced energy applications.
This book is a welcome response to the general concerns for the generation and conservation of energy in the future.
Semiconducting polymers are of great interest for applications in electroluminescent devices, solar cells, batteries, and diodes. This volume provides a thorough introduction to the basic concepts of the photophysics of semiconducting polymers as well as a description of the principal polymerization methods for luminescent polymers. Divided into two main sections, the book first introduces the advances made in polymer synthesis and then goes on to focus on the photophysics aspects, also exploring how new advances in the area of controlled syntheses of semiconducting polymers are applied. An understanding of the photophysics process in this kind of material requires some knowledge of many different terms in this field, so a chapter on the basic concepts is included. The process that occurs in semiconducting polymers spans time scales that are unimaginably fast, sometimes less than a picosecond. To appreciate this extraordinary scale, it is necessary to learn a range of vocabularies and concepts that stretch from the basic concepts of photophysics to modern applications, such as electroluminescent devices, solar cells, batteries, and diodes. This book provides a starting point for a broadly based understanding of photophysics concepts applied in understanding semiconducting polymers, incorporating critical ideas from across the scientific spectrum.
Biopolymers and Biodegradable Plastics are a hot issue across the Plastics industry, and for many of the industry sectors that use plastic, from packaging to medical devices and from the construction indusry to the automotive sector. This book brings together a number of key biopolymer and biodegradable plastics topics in one place for a broad audience of engineers and scientists, especially those designing with biopolymers and biodegradable plastics, or evaluating the options for switching from traditional plastics to biopolymers. Topics covered include preparation, fabrication, applications and recycling (including biodegradability and compostability). Applications in key areas such as films, coatings controlled release and tissue engineering are discussed. Dr Ebnesajjad provides readers with an in-depth reference for
the plastics industry - material suppliers and processors,
bio-polymer producers, bio-polymer processors and fabricators - and
for industry sectors utilizing biopolymers - automotive, packaging,
construction, wind turbine manufacturers, film manufacturers,
adhesive and coating industries, medical device manufacturers,
biomedical engineers, and the recycling industry.
Medicinal chemistry and pharmacology are closely associated fields, and the use of natural products for their medicinal properties is ever-growing. The study of drugs from natural products and their effects on the living body are explored in this volume. The book looks into the research, discovery, and characterization of chemicals that exhibit biological effects. Providing an informative compilation of research, valuable case studies, and reviews of existing literature in the area, the book focuses on the ethnobotanical uses of natural products and phytochemicals for health care, including applications for diabetes, ulcers, wound healing, chronic alcoholism, hemorrhoidal treatment, cancer mitigation, pain management, immunotherapy, and more.
Low shear polymer powder processing provides unique solutions to many processing problems and offers a set of production techniques, frequently un-paralleled by other production methods. In recent years there has been increased interest in this field but no comprehensive review of the subject has been available until now. In this book, a team of experts have taken the novel approach of treating several processing techniques, such as compacted powder sintering, rotational moulding, powder coating, ram extrusion, and compression moulding, as diverse implementations of a single technology. The first chapters deal with the scientific and engineering fundamentals shared by various polymer powder processing techniques, and are followed by a detailed examination of each technique and some special effects. Polymer Powder Technology will prove invaluable to technologists, plastics and materials engineers, researchers and students working with various aspects of particulate polymer processing.
This book emphasizes the relationship between the microscopic structure of gels and their macroscopic behaviour. Deals with organic polymeric gels, focusing on experimental methods which have only recently been introduced to study both reversible and irreversible gels. It introduce the reader with to theory and practice of physics as applied to the study of characteristics of polymeric gels and offers several clearly described basic approaches to experimental investigations into gel properties. An outstanding resource on experimental advances and modern interpretations of polymeric gel properties written by prominent experts in the field.
Covering fundamentals through applications, this book discusses environmentally friendly polymer nanocomposites and alternatives to traditional nanocomposites through detailed reviews of a variety of materials procured from different resources, their synthesis, and applications using alternative green approaches. The text: Describes green polymeric nanocomposites that show greater properties in terms of degradability, biocompatibility, synthesis process, cost effectiveness, mechanical strength, high surface area, nontoxicity, and environmental friendliness Explains the basics of eco-friendly polymer nanocomposites from different natural resources and their chemistry Discusses practical applications that present future directions in the biomedical, pharmaceutical, and automotive industries This book is aimed at scientists, researchers, and academics working in nanotechnology, biomaterials, polymer science, and those studying products derived from eco-friendly nanomaterials.
This title gives an overview of composites and biocomposites. It discusses the history of CaPO4/ /polymer biocomposites and hybrid biomaterials, as well as analyzing the latest developments in the field. It also covers bioactivity and biodegradation of CaPO4-based biomaterials.
As the title suggests, this unique book describes the synthesis, structure and properties of the polyamide family known by the common term n-nylon. Each nylon from n=1 to n=22 is discussed in detail with descriptions of the preparation of monomers, various synthetic approaches to the polymerization, structure and crystallisation of polymers and both their fundamental properties and important technological properties. It treats the structure and properties from two perspectives, namely the effect of the aliphatic chain length between amide groups and the effects of the rigidity or flexibility of the main chain Whilst intended as a reference work for all polymer scientists, in academia and industry, working with nylons, polyamide and condensation polymers, n-Nylons will also be appreciated by post-graduate students of polymer science and engineering. Each self-contained chapter can be read individually and is extensively referenced.
This book provides a broad overview of current studies in the engineering of polymers and chemicals of various origins. The innovative chapters cover the growth of educational, scientific, and industrial research activities among chemists, biologists, and polymer and chemical engineers. This book publishes significant research and reviews reporting new methodologies and important applications in the fields of industrial chemistry, industrial polymers, and biotechnology, as well the latest coverage of chemical databases and the development of new computational methods and efficient algorithms for chemical software and polymer engineering.
This new book provides a solid understanding of the recent developments in the field of composites and nanocomposites. It explains the significance of the new fillers, such as graphene and arbon nanotubes in different matrix systems. The application of these materials in biological and others fields also makes this book unique. This detailed study of nanocomposites, their structure, processing and characterization will be of value in all walks of engineering life. The book covers the following topics: * polymer matrix composites * ceramic matrix composites * carbon matrix composites * wood-based composites * biocomposites * ecocomposites * nanocomposites * processing * properties * fracture and damage mechanics * durability * and more Composite materials are solids that contain two or more distinct constituent materials or phases, on a scale larger than the atomic. The term "composite" is usually reserved for those materials in which the distinct phases are separated on a scale larger than the atomic, and in which properties such as the elastic modulus are significantly altered in comparison with those of a homogeneous material. Composites have properties that cannot be achieved by either of the constituent materials alone. Composites are becoming more and more important as they can help improve our quality of life. Composites are put into service in flight vehicles, automobiles, boats, pipelines, buildings, roads, bridges, and dozens of other products. Researchers are finding ways to improve other qualities of composites so they may be strong, lightweight, long-lived, and inexpensive to produce. The science and engineering of composites and nanocomposites draws on traditional characterization and processing technologies. Research describing structures containing nanoparticles seems to rely on methods that are being pushed to the limit of resolution. Preparation of nanocomposites also poses very real processing challenges. The list of questions about the fabrication, characterization, and use of nanocomposites is long despite massive financial and intellectual investment. The magnitude of the effects these small particles impart to the bulk properties of a composite are great enough that the science is likely to continue to grow in importance. |
You may like...
Fundamental Biomaterials: Polymers
Sabu Thomas, Preetha Balakrishnan, …
Paperback
Durability and Reliability of Medical…
Mike Jenkins, Artemis Stamboulis
Hardcover
R4,034
Discovery Miles 40 340
Handbook of Advanced Ceramic Coatings…
Ram Gupta, Amir Motallebzadeh, …
Paperback
R6,171
Discovery Miles 61 710
3D and 4D Printing of Polymer…
Kishor Kumar Sadasivuni, Kalim Deshmukh, …
Paperback
R5,549
Discovery Miles 55 490
Resonance - Long-Lived Waves
Leonard Dobrzynski, Housni Al-Wahsh, …
Paperback
R3,925
Discovery Miles 39 250
|