![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Plastics & polymers technology
Basic concepts on biodegradable biopolymer science are presented in this book, as well as techniques, analyses, standards, and essential criteria for the characterization of biodegradable materials obtained from biopolymers. The development and innovation of products and processes considering the environment are highlighted in this book. All of the applications described have been discussed from the point of view of sustainability. Additionally, this book highlights that biodegradability is a great burden when trying to replace, modify, and/or design existing products, and processes that are highly polluting. Finally, the present book concludes with reflections on the development of biopolymers in different areas, and some of their consequences depending on their biodegradability.
Independent, practical guidance on the structural design of polymer composites is provided for the first time in this book. Structural designers familiar with design of conventional structural materials such as steel and concrete will be able to use it to design a broad range of polymeric composites for structural applications, using glass fibre reinforced plastic materials, components, connections and assemblies.
FROM THE PREFACE The surface modification of polymeric materials has been the object of a large number of investigations, but little attention has been paid to making a polymer surface frictionless or slippery, and lubricating surfaces are practically unmentioned in any books so far published, probably because of the relatively minor importance of polymer friction in industrial applications. A lubricating polymer surface is important, especially in marine and biomedical technologies. For instance, biomaterials to be used for catheterization on the urinary, tracheal, and cardiovascular tracts, or for endoscopy, should have a surface with good handling characteristics when dry and which preferably becomes slippery upon contact with body liquids. Such a low-friction surface must enable easy insertion and removal of the device from a patient. It would further prevent mechanical injury to the mucous membranes and minimize discomfort to the patient. Earlier approaches to providing a low-friction surface were mostly simple applications involving lubricants such as lidocaine jelly, silicone oil, or non-permanent coating with low-friction materials such as polyethylene or fluoroplastics. However, these substances cannot maintain a high degree of slipperiness for the required duration of time, due to the fact that they leach or disperse into the surrounding body fluids. The aim of this book is to describe the principle of lubrication, to outline a variety of methods for attaining a lubricous surface, and to describe the characteristics and properties of such lubricous surfaces. The technology for surface modification of polymers by grafting will find other applications than for lubrication, such as for improvement of the interfacial adhesion in polymer composites.
This work examines the science and technology used in the manufacture of acrylic fibre for both mass-produced commodity products and premium products. It elucidates the chemistry and fibre production techniques of speciality acrylics such as flame-retardant, water-reversible bicomponent, producer dyed and others. Capacity figures for developing countries are published here.;This work is intended for: polymer, fibre and textile scientists, chemists and engineers; physical and dye chemists; textile company managers; and upper-level undergraduate and graduate students in these disciplines.
Volume A of Handbook of Polymer Nanocomposites deals with Layered Silicates. In some 20 chapters the preparation, architecture, characterisation, properties and application of polymer nanocomposites are discussed by experts in their respective fields
Provides the basic background needed by engineers to determine experimentally and interpret the rheological behavior of polymer melts--including not only traditional pure melts but also solutions and compounds containing anisotropic (fiber or disc) or colloidal particles--and apply it to analyze flow in processing operations. Experimental foundations of modern rheology and rheo-optics and the interpretation of experimental data are covered, which also develops the fundamentals of continuum mechanics and shows how it may be applied to devise methods for measurement of rheological properties, formulation of three-dimensional stress-deformation relationships, and analysis of flow in processing operations. Also discusses the structure of polymers and considers rheological behavior in terms of structure. Constitutive equations relating stress to deformation history in non-Newtonian fluids and their applications are discussed. Each chapter presents an overview of the subject matter and then develops the material in a pedagogical manner.
This is a complete illustrated guide and reference to today's plastic films for packaging. All significant aspects of plastic films for packaging are clearly and concisely presented: from materials, processes and machinery to applications and regulatory, social and economic considerations. More than 70 schematics illustrate materials, processes and package constructions. More than 30 tables provide important reference data in convenient form. The authors are leading authorities on plastic packaging films with first-hand experience in the R&D of many of today's widely used films. Published in cooperation with the Institute of Packaging Professionals.
This is a new, basic introduction to polymer science. It is both comprehensive and readable. The authors are leading educators in this field with extensive backgrounds in industrial and academic polymer research. The text starts with a description of the types of microstructures found in polymer materials. This provides an understanding of some of the key features of the various mechanisms of homopolymerization and copolymerization which are discussed in following chapters. Also discussed in these chapters are the kinetics and statistics of polymerization, with a separate chapter on the characterization of chain structure by spectroscopic methods. The next part of the text deals with chain conformation, structure and morphology, leading to a discussion of crystallization, melting and glass transition. The discussion then moves from solid state to solution properties where solution thermodynamics is introduced. This provides the basis for discussion of the measurement of molecular weight by various solution methods. The final chapter deals with mechanical and rheological properties which are discussed from a phenomenological continuum approach and then in terms of a fundamental molecular perspective. Altogether, this new text provides a comprehensive, readable introduction to and overview of polymer science. It is well illustrated with schematics prepared for this text to help in the understanding of key concepts. It will provide a basic understanding of today's polymer science for technical and engineering personnel not already familiar with the subject, and a convenient update and overview for materials scientists.
During the past 10 years a large variety of new multiphase polymer-based materials have been studied from a morphological point of view. Simultaneously, huge progress has been achieved in microscopy. These circumstances underline the need for a reference that delineates the differences of various types of nanostructures in multiphase polymer-based materials. Multiphase Polymer-Based Materials: An Atlas of Phase Morphology at the Nano and Micro Scale presents up-to-date coverage of developments in this field in a practical and easy to use format. Illustrates Microscopic Tools for Phase Morphology Investigation The author sifted through an encyclopedic amount of information to provide a selection of more than 550 microscopy pictures resulting from the observation of multiphase polymer-based materials. These illustrations include micro and nanopolymer blends, micro and nanocomposites, micro and nano phases in copolymers, thermosets, and thermoplastic blends that were intensively developed over the past decade. Each picture includes a detailed explanation of how to attain these materials, how the samples were prepared, and how the observations were conducted. A Practical Straightforward Approach to Microscopic Observation The book examines the various microscopic tools employed for the investigation of the phase morphology, highlighting the advantages and disadvantages of each. It provides a practical, straightforward approach for dealing with the microscopic observation of phase morphology in multicomponent polymer blends and nanocomposites.
Derived from the fourth edition of the well-known Plastics Technology Handbook, Industrial Polymers, Specialty Polymers, and Their Applications covers a wide range of general and special types of polymers, along with a wealth of information about their applications. The book first focuses on commonly used industrial polymers, including polypropylenes, low- and high-density polyethylenes, and poly(vinyl chloride), as well as less widely used polymer types, such as acrylics, ether polymers, cellulosics, sulfide polymers, silicones, polysulfones, polyether ether ketones, and polybenzimidazoles. It then explores polymer derivatives and polymeric combinations that play special and often critical roles in diverse fields of human activities. The polymers covered include liquid crystal, electroactive, ionic, and shape memory polymers; hydrogels; and nanocomposites. The volume concludes with a comprehensive overview of new developments in the use of polymers in a variety of areas.
"Provides in-depth coverage of the entire thermoforming molding process from market domain and materials options to manufacturing methods and peripheral support. Second Edition furnishes entirely new information on twin sheet forming, corrugated tubing and pipe manufacturin gtechniques, plastics recycling, forthcoming equipment, and energy and labor costs."
Hydrophilic polyurethanes have the unique property of being able to absorb or otherwise manage moisture-and this makes them valuable in medical and a number of other important commercial applications. This new book provides a concise, unified presentation of hydrophilic polyurethanes technology and applications. All important topics from chemistry, analysis, processing and quality systems to product development and applications are covered clearly and systematically. The text is well illustrated by more than 45 flowcharts and diagrams and supplemented by more than 20 data tables. A special feature of this new book is its inclusion of case studies of recent development of commercially valuable products using hydrophilic polyurethanes. These case studies illustrate how these unique materials can be tailored to specific application needs. The information in this new book will be useful to all those involved in the research, development and applications of polymers, biomaterials, and other materials whose utility requires the special properties of hydrophilic polyurethanes. To receive your copy promptly, please order now. Information on ordering - by mail, fax, telephone or the publisher's secure website - follows the complete table of contents on the reverse. The Author Tim Thomson is the director of Main Street Technologies, an independent research organization specializing in the development of advanced medical materials and devices. Previously he was technical manager of the Hypol Group, W. R. Grace & Co. He is recognized as an authority on hydrophilic polyurethanes and their use in medical device and other applications. He has an M.S. in Physical Chemistry from Michigan Technological University and has been awarded six patents in synthetic chemistry and process control.
Representing the collective effort of over 30 leading scientists in Russia and the United States, this is the first book written solely on the subject of nuclear batteries. It presents a rich historical discussion and original research on the conversion of nuclear materials into electrical power, which can then be harvested to make long-lasting, more energy efficient batteries. With this technology, power-matched supplies would last decades - even centuries - using safe, direct, long-life, stable, integrated electric power from the highest energy density source available. Polymers, Phosphors, and Voltaics for Radioisotope Microbatteries presents the state-of-the-art in interdisciplinary research in radiochemistry, tritium storage, semiconductor fabrication and characterization, nuclear battery fabrication and testing, integration into MEMS and other electronic devices, and much more. A key feature of this book is its discussion of construction materials for miniaturized radioisotope power supplies, since progress in nuclear battery technology depends on characterization of functionally radiation-stable components. Though substantial progress has been made to solve problems of using integrated radioisotope batteries for micro- and nanoelectronics, each author has provided an authoritative assessment and has indicated where development is needed. Research in this area has the potential to revolutionize the microelectronics industry by enabling MEMS and nanotechnology. Significant technological progress depends today on coordinated interdisciplinary research. Polymers, Phosphors, and Voltaics for Radioisotope Microbatteries contains diverse discussions of the problems of using radioactive material for microelectronic power needs and guides readers to future research in the area of long-life, high energy-density batteries.
Details laboratory and industrial synthesis and applications of oligomers-suggesting practical solutions to the on-the-job problems as well as exploring processing devices and techniques for industrial-scale production of new oligomer types.
Biopolymers have the potential to cut carbon emissions and reduce carbon dioxide in the atmosphere. The carbon dioxide released when they degrade can be reabsorbed by plants, which makes them close to carbon neutral. Biopolymers are biodegradable and some are compostable, too. This book presents key topics on biopolymers, including their synthesis, characterization, and physiochemical properties, and discusses their applications in key areas such as biomedicine, agriculture, and environmental engineering. It will serve as an in-depth reference for the biopolymer industry-material suppliers and processors, producers, and fabricators-and engineers and scientists who are designing biopolymers or evaluating options for switching from traditional plastics to biopolymers.
This book provides a simplified and practical approach to designing with plastics that funda mentally relates to the load, temperature, time, and environment subjected to a product. It will provide the basic behaviors in what to consider when designing plastic products to meet performance and cost requirements. Important aspects are presented such as understanding the advantages of different shapes and how they influence designs. Information is concise, comprehensive, and practical. Review includes designing with plastics based on material and process behaviors. As de signing with any materials (plastic, steel, aluminum, wood, etc.) it is important to know their behaviors in order to maximize product performance-to-cost efficiency. Examples of many different designed products are reviewed. They range from toys to medical devices to cars to boats to underwater devices to containers to springs to pipes to buildings to aircraft to space craft. The reader's product to be designed can directly or indirectly be related to product design reviews in the book. Important are behaviors associated and interrelated with plastic materials (thermoplastics, thermosets, elastomers, reinforced plastics, etc.) and fabricating processes (extrusion, injec tion molding, blow molding, forming, foaming, rotational molding, etc.). They are presented so that the technical or non-technical reader can readily understand the interrelationships."
- One of very few books available to cover this subject area.
Explores the nature of relaxation phenomena in polymers on the basis of time-temperature equivalence. Its role in the physical and mechanical behavior of polymers materials and fundamentals of thermoplastics processing are discussed. Four appendixes detail thermo-mechanical methods to study relaxation in polymers, structure of both amorphous and semi-crystalline polymers, and unified approach to describe deformation of polymeric materials.
This book summarizes recent advances in the fabrication methods, properties, and applications of various ceramic-filled polymer matrix composites. Surface-modification methods and chemical functionalization of the ceramic fillers are explored in detail, and the outstanding thermal and mechanical properties of polymer-ceramic composites, the modeling of some of their thermal and mechanical parameters, and their major potential applications are discussed along with detailed examples. Aimed at researchers, industry professionals, and advanced students working in materials science and engineering, this work offering a review of a vast number of references in the polymer-ceramic field, this work helps readers easily advance their research and understanding of the field.
This title gives an overview of composites and biocomposites. It discusses the history of CaPO4/ /polymer biocomposites and hybrid biomaterials, as well as analyzing the latest developments in the field. It also covers bioactivity and biodegradation of CaPO4-based biomaterials.
Advancements in polymer nanocomposite foams have led to their application in a variety of fields, such as automotive, packaging, and insulation. Employing nanocomposites in foam formation enhances their property profiles, enabling a broader range of uses, from conventional to advanced applications. Since many factors affect the generation of nanostructured foams, a thorough understanding of structure-property relationships in foams is important. Polymer Nanocomposite Foams presents developments in various aspects of nanocomposite foams, providing information on using composite nanotechnology for making functional foams to serve a variety of applications. Featuring contributions from experts in the field, this book reviews synthesis and processing techniques for preparing poly(methyl methacrylate) nanocomposite foams and discusses strategies for toughening polymer foams. It summarizes the effects of adding nanoclay on polypropylene foaming behavior and describes routes to starch foams for improved performance. The books also reviews progress in achieving high-performance lightweight polymer nanocomposite foams while keeping desired mechanical properties, examines hybrid polyurethane nanocomposite foams, and covers polymer-clay nanocomposite production. The final chapters present recent advances in the field of carbon nanotube/polymer nanocomposite aerogels and related materials as well as a review of the nanocomposite foams generated from high-performance thermoplastics. Summing up the most recent research developments in the area of polymer nanocomposite foams, this book provides background information for readers new to the field and serves as a reference text for researchers.
Provides a platform related to fabrication and advancement of all categories of polymeric biomaterials Explores advancement of pertinent biomedical and drug delivery systems Includes a wide range of biomaterials and its application in diversified fields Gives out environmental justification of green biopolymers and their applications in water remediation Discusses advanced applications of bio-composite polymers viz. food packaging and anti-corrosive coatings
Covers synthesis, properties and applications of quantum dots Discusses the modern fabrication technologies, processing, nanostructure formation, and mechanisms of reinforcement of quantum dots-polymer nanocomposites Explores the properties of quantum dots-based polymer nanocomposites Discusses the biocompatibility, suitability, and toxic effects of quantum dots-based polymer nanocomposites Reviews recent innovations, applications, opportunities, and future directions in quantum dots-based polymer nanocomposites
This work explores the use of composite nanotechnology for thin coatings on various substrates. It compiles recent advances in nanocomposite coatings for experienced researchers and provides background information for those new to the field. The book not only explains the synthesis of bulk nanocomposite materials, it describes their application in areas such as the automotive and packaging industries. It explains how nanocomposite coatings provide a gas barrier to the substrate foil or laminate and how the coatings are used to provide properties such as anti-scratch and anti-corrosion.
Advanced Polyimide Materials: Synthesis, Characterization and Applications summarizes and reviews recent research and developments on several key PI materials. A wide array of PI materials are included, including high performance PI films for microelectronic fabrication and packaging, display and space applications, fiber-reinforced PI composites for structural applications in aerospace and aviation industries, and PI photoresists for integrated circuit packaging. The chemical features of PI are also described, including semi-alicyclic PIs, fluorinated PIs, phosphorous-containing PIs, silicon-containing PIs and other new varieties, providing a comprehensive overview on PI materials while also summarizing the latest research. The book serves as a valuable reference book for engineers and students working on polymer materials, microelectronics manufacturing and packaging in industries such as aerospace and aviation. |
You may like...
The Oxford Handbook of German Philosophy…
Michael N. Forster, Kristin Gjesdal
Hardcover
R4,552
Discovery Miles 45 520
The Thabo Bester Story - The Facebook…
Marecia Damons, Daniel Steyn
Paperback
Lore Of Nutrition - Challenging…
Tim Noakes, Marika Sboros
Paperback
(4)
|