![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Plastics & polymers technology
This new volume presents leading-edge research in the rapidly changing and evolving field of polymer science as well as on chemical processing. The topics in the book reflect the diversity of research advances in the production and application of modern polymeric materials and related areas, focusing on the preparation, characterization, and applications of polymers. Also covered are various manufacturing techniques. The book will help to fill the gap between theory and practice in industry.
"Summarizes research and progress in understanding the fundamental molecular properties of polycarbonates by covering history, theory, modeling, and spectroscopy. Offers the first comprehensive survey of polycarbonates in over 30 years."
This is the second volume of a two-volume work which summarizes in an edited format and in a fairly comprehensive manner many of the recent technical research accomplishments in the area of Elastomers. Advances in Elastomers discusses the various attempts reported on solving these problems from the point of view of the chemistry and the structure of elastomers, highlighting the drawbacks and advantages of each method. It summarize the importance of elastomers and their multiphase systems in human life and industry, and covers all the topics related to recent advances in elastomers, their blends, IPNs, composites and nanocomposites. This second volume is deals with composites and nanocomposites of elastomers.
Outline proven methods from planning and manufacture to product testing, this work reports on the most effective means of producing plastics by the extrusion blow moulding process. It supplies data on materials, performance standards and testing methodologies developed in industry with proven reliability and cost effectiveness.
This book covers the theory of the strength of laminated and reinforced structures made of polymer materials with regard to the changeability of physico-chemical properties is examined. It presents an experimental-theoretical method on the definition of physico-mechanical properties of polymers composite materials and polymerized bundles made of fibers with emphasis on the changes of physico-chemical properties of the materials. With mathematical strictness, the experimental and theoretical studies presented here will aid in the development of reliable methods and new practices of analyzing structures with the influence of chemically aggressive liquids and gases and in the creation of specific production structures that will withstand corrosive environments.
Polymeric and hybrid nanoparticles have received increased
scientific interest in terms of basic research as well as
commercial applications, promising a variety of uses for
nanostructures in fields including bionanotechnology and medicine.
Condensing the relevant research into a comprehensive reference,
Polymer and Polymer-Hybrid Nanoparticles: From Synthesis to
Biomedical Applications covers an array of topics from synthetic
procedures and macromolecular design to possible biomedical
applications of nanoparticles and materials based on original and
unique polymers.
The final chapter addresses biological applications of polymeric nanoparticles, including delivery of low-molecular-weight drugs, macromolecular drugs, imaging and diagnostics, and photodynamic therapy. Summarizing important developments in the field, the authors condense relevant research into a comprehensive resource.
This book provides an abundance of information about the science and application of nanoparticles in the creation of nanocomposite materials, covering the synthesis, properties, and applications of nanomaterials. Written by experts in their fields, the chapters provide important updates on a number of aspects of nanomaterials and their practical applications to create new materials, particularly polymer composite materials. The book is an outgrowth of notes the authors have compiled and used to teach advanced courses on polymers for many years. Useful for engineers and researchers, the book also functions as a highly practical and useful ancillary text for advanced-level students studying nanomaterials and polymer science.
The research and development activities in energy conversion and storage are playing a significant role in our daily lives owing to the rising interest in clean energy technologies to alleviate the fossil-fuel crisis. Polymers are used in energy conversion and storage technology due to their low-cost, softness, ductility and flexibility compared to carbon and inorganic materials. Polymers in Energy Conversion and Storage provides in-depth literature on the applicability of polymers in energy conversion and storage, history and progress, fabrication techniques, and potential applications. Highly accomplished experts review current and potential applications including hydrogen production, solar cells, photovoltaics, water splitting, fuel cells, supercapacitors and batteries. Chapters address the history and progress, fabrication techniques, and many applications within a framework of basic studies, novel research, and energy applications. Additional Features Include: Explores all types of energy applications based on polymers and its composites Provides an introduction and essential concepts tailored for the industrial and research community Details historical developments in the use of polymers in energy applications Discusses the advantages of polymers as electrolytes in batteries and fuel cells This book is an invaluable guide for students, professors, scientists and R&D industrial experts working in the field.
Through a balanced combination of theory and experiments, this book provides a detailed overview of the main and most up-to-date advances in the area of polymeric materials. Because the subject is essentially interdisciplinary and brings together scientists and engineers with different educational backgrounds, the book offers a research-oriented exposition of the fundamentals as well. The book is based on the editors' and authors' extensive experience in research, development, and education in the field of materials science, and especially polymer testing, polymer diagnostics, and failure analysis. A comprehensive coverage of the methods of polymer testing is provided along with the results of the authors' work on deformation and fracture behavior of polymers. This book will be useful to faculty as well as advanced-level students in materials science, materials technology, plastic technology, mechanical engineering, process engineering, and chemical engineering.
Polymers are used in many everyday technologies and their degradation due to environmental exposure has lead to great interest in materials which can heal and repair themselves. In order to design new self healing polymers it's important to understand the fundamental healing mechanisms behind the material. Healable Polymer Systems will outline the key concepts and mechanisms underpinning the design and processing of healable polymers, and indicate potential directions for progress in the future development and applications of these fascinating and potentially valuable materials. The book covers the different techniques developed successfully to date for both autonomous healable materials (those which do not require an external stimulus to promote healing) and rehealable or remendable materials (those which only recover their original physical properties if a specific stimulus is applied). These include the encapsulated-monomer approach, reversible covalent bond formation, irreversible covalent bond formation and supramolecular self-assembly providing detailed insights into their chemistry. Written by leading experts, the book provides polymer scientists with a compact and readily accessible source of reference for healable polymer systems.
First Published in 2006. This volume introduces and provides a semantic analysis of Discourse Adjectives, a natural class of adjectives that the author argues includes apparent, clear, evident, and obvious among its prototypical members. With a main claim that Discourse Adjectives do not provide information about the facts of the world. Rather, they are used by interlocutors to negotiate the status of propositions in a discourse.
International law is often manipulated in the debate about humanitarian intervention. The Liberian case provides an opportunity to challenge the UN and The Economic Community of West African States' (ECOWAS') new approach. ECOWAS and the UN's justifications for moving away from the current norms are flawed. No enlightened person would disagree with the values of peace, democracy, human rights, and economic development. This book, however, explores whether these goals be pursued within the current framework or outside it.
With chapters by the editors and other experts in the field of polymer science, this book covers a broad selection of important research advances in the field, including updates on enzymatic destruction and photoelectric characteristics, studies on the changes in the polymer molecular mass during hydrolysis and a new type of bioadditive for motor fuel, and an exploration of the interrelation of viscoelastic and electromagnetic properties of densely cross-linked polymers. Also included are chapters that discuss the problems of mechanics of textile performance, new aspects of polymeric nanofibers, a mathematical model of nanofragment cross-linked polymers, and much more.
This important book is an overall analysis of different innovative methods and ways of recycling in connection with various types of materials. It aims to provide a basic understanding about polymer recycling and its reuse as well as presents an in-depth look at various recycling methods. It provides a thorough knowledge about the work being done in recycling in different parts of the world and throws light on areas that need to be further explored. Emphasizing eco-friendly methods and recovery of useful materials The book covers a wide variety of innovative recycling methods and research, including * Green methods of recycling * Effective conversion of biomass and municipal wastes to energy-generating systems * A catalyst for the reuse of glycerol byproduct * Methods of adsorption to treat wastewater and make it suitable for irrigation and other purposes * Disposal of sludge * The use of calcined clay to replace both fine and coarse aggregates * Recycling of rubbers * The production of a sorbent material for paper mill sludge * Replacing polypropylene absorbent in oil spill sanitations * The use of natural fibers for various industrial applications * Cashew nut shell liquid as a source of surface active reagents * Integrated power and cooling systems based on biomass * Recycling water from household laundering * much more
The addition of nanoparticles to polymer composites has led to a
new generation of composite materials with enhanced and novel
properties. Advances in polymer nanocomposites reviews the main
types of polymer nanocomposites and their applications.
Natural Polymers, Biopolymers, Biomaterials, and Their Composites, Blends, and IPNs focuses on the recent advances in natural polymers, biopolymers, biomaterials, and their composites, blends, and IPNs. Biobased polymer blends and composites occupy a unique position in the dynamic world of new biomaterials. The growing need for lubricious coatings and surfaces in medical devices-an outcome of the move from invasive to noninvasive medicines/procedures-is playing a major role in the advancement of biomaterials technology. Natural polymers have attained their cutting-edge technology through various platforms, yet there is a lot of novel information about them that is discussed in the book. This important work covers topics such as chitosan composites for biomedical applications and wastewater treatment, coal biotechnology, biomedical and related applications of second generation polyamidoamines, silk fibers, PEG hydrogels, bamboo fiber reinforced PE composites, jute/polyester composites, magnetic biofoams, and many other interesting aspects of importance to polymer research today.
Photoresponsive polymers that can be manipulated with specific frequency of light Designing of polymers for vibration damping Smart manipulations of hydrophic and superhydrophobic polymers Biopolymers including hydrogel for smart application, drug delivery etc. Smart paints Self-healing and shape memory polymers Holography for data storage Phase change polymers and solid polymer electrolyte for thermal and electrochemical energy Molecularly imprinting polymers for sub ppm sensing and removal of undesired materials Smart textile covering the concept of advanced textiles
Mineral-filled polymer composites exhibit several advantages that make this material class attractive for a variety of applications, including their low cost, light weight, excellent rigidity, and high mechanical strength. Mineral-Filled Polymer Composites Handbook serves as a comprehensive overview of the latest research, trends, applications, and future directions of advanced mineral fiber-reinforced polymer composites. Comprised of 2 volumes: Mineral-Filled Polymer Composites: Perspective, Properties, and New Materials Mineral-Filled Polymer Composites: Selection, Processing, and Applications Presents details on processing, applications, and ageing of macro- to nanosized mineral reinforced polymer composites Examines fabrication techniques, novel synthesis methods, and mechanical behavior, thermal, flammability, and functional properties of a wide array of mineral filled polymer composite materials Covers a broad range of different research fields, including organic and inorganic filler used in the development of composites for various types of engineering applications Offers the latest developments in nano/micromineral-based polymer composites This book serves as an excellent reference guide for researchers, advanced students, academics, and industry professionals interested in the synthesis of mineral-filled polymer and biopolymer composites, as well as those pursuing research in the broad fields of composite materials, polymers, organic/inorganic hybrid materials, and nano-assembly.
Graphite, Graphene, and Their Polymer Nanocomposites presents a compilation of emerging research trends in graphene-based polymer nanocomposites (GPNC). International researchers from several disciplines share their expertise about graphene, its properties, and the behavior of graphene-based composites. Possibly the first published monograph of its kind, this book provides a comprehensive snapshot of graphite, graphene, and their PNCs, including the underlying physics and chemistry, and associated applications. Beginning with an introduction to natural and synthetic graphite, the precursors to graphene, the text describes their properties, characterization techniques, and prominent commercial applications. The focus then moves to graphene and its unique features, and techniques for its characterization. The chapters cover advances in electrochemical exfoliation of graphite, as well as exfoliation routes to produce graphene and graphite nanoplatelets for polymer composites. They also explore commercial use of graphene-based materials, such as emerging clean energy and pulse laser applications, and use as nanofillers in epoxy-based composites. The authors provide an overview of nanofillers and address two methods for GPNC preparation as well as specialized properties of GPNC. With its multidisciplinary approach, this book provides a broader scientific and engineering perspective necessary for meaningful advancements to take place.
PEEK biomaterials are currently used in thousands of spinal fusion patients around the world every year. Durability, biocompatibility and excellent resistance to aggressive sterilization procedures make PEEK a polymer of choice, replacing metal in orthopedic implants, from spinal implants and hip replacements to finger joints and dental implants. This Handbook brings together experts in many different facets related to PEEK clinical performance as well as in the areas of materials science, tribology, and biology to provide a complete reference for specialists in the field of plastics, biomaterials, medical device design and surgical applications. Steven Kurtz, author of the well respected "UHMWPE Biomaterials
Handbook" and Director of the Implant Research Center at Drexel
University, has developed a one-stop reference covering the
processing and blending of PEEK, its properties and biotribology,
and the expanding range of medical implants using PEEK: spinal
implants, hip and knee replacement, etc. Covering materials science, tribology and applications, Kurtz provides a complete reference for specialists in the field of plastics, biomaterials, biomedical engineering and medical device design and surgical applications.
Scientists are conducting active research in different fields of engineering, science and technology by adopting the Green Chemistry Principles and methodologies to devise new processes, with a view to help protect and ultimately save the environment from further anthropogenic interruptions and damage. With this in mind, the book provides an up-to-date, coherently written and objectively presented set of chapters from eminent international researchers who are actively involved in academic and technological research in the synthesis, (bio)degradation, testing and applications of biodegradable polymers and biopolymers. This pool of the latest ideas, recent research and technological progress, together with a high level of thinking with a comprehensive perspective, makes the emerging field of biodegradable polymer science and engineering (or bio-based polymers) linked to environmental sustainability, the essence of this key publication. The handbook consists of chapters written and contributed by international experts from academia who are world leaders in research and technology in sustainability and biopolymer and biodegradable polymer synthesis, characterisation, testing and use. The book highlights the following areas: green polymers; biopolymers and bionanocomposites; biodegradable and injectable polymers; biodegradable polyesters; synthesis and physical properties; discovery and characterization of biopolymers; degradable bioelastomers, lactic acid based biodegradable polymers; enzymatic degradation of biodegradable polymers; biodegradation of polymers in the composting environment; recent development in biodegradable polymers; research and applications and biodegradable foams. The book is aimed at technical, research-orientated and marketing people in industry, universities and institutions. It will also be of value to the worldwide public interested in sustainability issues and biopolymer development as well as others interested in the practical means that are being used to reduce the environmental impacts of chemical processes and products, to further eco-efficiency, and to advance the utilization of renewable resources for a bio-based production and supplier chain. Readers will gain a comprehensive and consolidated overview of the immense potential and ongoing research in bio-based and biodegradable polymer science, engineering and technology to make the world greener.
Adaptive polymers include those which are responsive to different stimuli - namely physical, mechanical, chemical and biological - with controlled and/or predicable behavior. Many technological breakthroughs and scientific advances have been made in the last few decades and this volume aims to cover the most up-to-date studies and achievements in some adaptive polymers, in terms of principles of adaptiveness, properties, structure design and characterization with an emphasis on their applications, particularly in textiles, skin care, medicine and other related areas. Some versatile functional polymers, such as Chitosan, cylodextrin and dendrimer,and hyper-branched polymers are also introduced in order to provide a source for people in different professions when searching for knowledge and inspiration in the field of adaptive and functional polymers. One of the key features of this book is the fact that it is multi-disciplinary in nature, and so accessible to a wide variety of readers.
Practical and affordable, thermoplastics account for more than 90 percent of all plastic materials manufactured. That so many varieties are now available, speaks to the idea that while there is no one perfect material, it is possible to find a material that fits for every application. However, selecting that right material is no small challenge. Answering the needs of manufacturers and product developers, Thermoplastic Materials: Properties, Manufacturing Methods, and Applications provides all the information required to confidently select the right thermoplastic for any application. Based on a course taught to engineering students, the book starts with an overview of the plastics industry, looking at the major companies involved and how their products influence society. It then discusses various topics essential to the understanding and manufacturing of thermoplastics before getting to the core of the book, more than 400 pages of consistently formatted entries, organized according to 19 thermoplastics families and groupings. Each chapter covers raw materials, manufacturing methods, properties, costs, and applications. Among many topics related to thermoplastic resins, this seminal work: Provides micro and quasi-macro perspectives on their behavior Evaluates major manufacturing methods Discusses crystallinity and permeability Elaborates on the properties that make them useful barrier and packaging materials Written by Christopher Ibeh, professor of plastics engineering technology and director of the Center for Nanocomposites and Multifunctional Materials at Pittsburg State University, this book goes beyond current practices to look at emerging materials, including nanocomposites, and discusses sustainability as it relates to plastics. It also includes a chapter on functionalized thermoplastics, written by Andrey Beyle.
This volume provides in-depth knowledge and recent research on polymers and nanostructured materials from synthesis to advanced applications. Leading researchers from industry, academia, government, and private research institutions across the globe have contributed to this volume, covering new research on nanocomposites, polymer technology, and electrochemistry.
This new work, Functional Polymeric Composites: Macro to Nanoscales, focuses on new challenges, findings, opportunities, and applications in the area of polymer composites. The chapters, written prominent researchers from academia, industry, and research institutes from around the world, present contemporary research and developments on advanced polymeric materials, including polymer blends, polymer electrolytes, bio-based polymer, polymer nanocomposites, etc. Several chapters also cover the applications of the polymeric systems in current industry development and synthesis and characterization of the products. |
You may like...
Resonance - Long-Lived Waves
Leonard Dobrzynski, Housni Al-Wahsh, …
Paperback
R3,925
Discovery Miles 39 250
Fundamental Biomaterials: Polymers
Sabu Thomas, Preetha Balakrishnan, …
Paperback
Renewable Polymers and Polymer-Metal…
Sajjad Haider, Adnan Haider
Paperback
R4,663
Discovery Miles 46 630
Durability and Reliability of Medical…
Mike Jenkins, Artemis Stamboulis
Hardcover
R4,034
Discovery Miles 40 340
Bio-based Flame-Retardant Technology for…
Yuan Hu, Hafezeh Nabipour, …
Paperback
R4,663
Discovery Miles 46 630
3D and 4D Printing of Polymer…
Kishor Kumar Sadasivuni, Kalim Deshmukh, …
Paperback
R5,549
Discovery Miles 55 490
|