![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Plastics & polymers technology
In this important volume, the structures and functions of these advanced polymer and composite systems are evaluated with respect to improved or novel performance, and the potential implications of those developments for the future of polymer-based composites and multifunctional materials are discussed. It focuses exclusively on the latest research related to polymer and composite materials, especially new trends in frontal polymerization and copolymerization synthesis, functionalization of polymers, physical properties, and hybrid systems. Several chapters are devoted to composites and nanocomposites.
Elastomer-Based Composite Materials: Mechanical, Dynamic, and Microwave Properties and Engineering Applications is focused on elastomer-based composite materials comprising different types of reinforcing fillers. The book provides an informative examination of the possibilities for broadening the engineering applications of elastomer composites through using various types of hybrid fillers, ferrites, and ceramics, and also examines their synthesis and characterization. It discusses new hybrid fillers that have been synthesized by different techniques, e.g. impregnation of different substrates (carbon black, conductive carbon black, activated carbons, etc.) with silica or magnetite. These new fillers have been thoroughly characterized by standard techniques and by up-to-date methods, such as energy dispersive X-ray spectroscopy in scanning transmission electron microscopy (STEM-EDX), atomic absorption spectroscopy (AAS), and inductively coupled plasma-optical emission spectroscopy (ICP-OES). The effect of those fillers upon the curing properties, mechanical and dynamic parameters, electrical conductivity, and dielectric and microwave characteristics of elastomer-based composites is discussed in detail in this volume. The book also covers the influence of various types of ceramics (SiC, B4C, and TiB2) and barium and strontium hexaferrites upon the aforementioned properties of rubber composites in conjunction with a view toward solutions for environmental problems caused by waste tires. The book shows that pyrolysis-cum-water vapor is a suitable and environmentally friendly method for the conversion of the waste green tires into useful carbon-silica hybrid fillers. The properties of elastomer-based composites comprising different types of nanostructures (fullerenes, carbon nanotubes, graphene nanoplatelets), modified activated carbons, and calcined kaolin are also discussed. Special attention is paid to composites with lower levels of zinc oxide. The volume provides an abundance of knowledge on the detailed characterization of these fillers and on the curing, mechanical, dynamic mechanical, and dielectric and microwave properties of the elastomeric composites. The book surveys the most recent research activities of the authors, which will make it a vital reference source for scientists in both the academic and industrial sectors, as well as for individuals who are interested in rubber materials. It will be very useful for students, especially PhD students, scientists, lecturers, and engineers working or doing research in the field of polymer materials science, elastomer-based composites and nanocomposites and their engineering applications in the production of microwave absorbers and electromagnetic waves shielding materials, materials for electronics devices and telecommunications.
Globally, fire retardants are needed to satisfy a multibillion dollar market. Fire retardancy of polymeric materials is an important component of fire safety. Fire retardants either reduce the likelihood of ignition and/or reduce the rate of flame spread and hence, escalation of fire. The need to comply with safety legislations forces industry to use fire retardants in materials in order to save lives. With growing consumer demands and new legislations, the development of new systems is an on-going process, which also involves understanding their mechanisms of action. This book covers the latest developments in fire retardant strategies including: " new fire retardant systems (including nanoparticulate fillers, sometimes combined with conventional fire retardants) " intumescent formulations and their recent applications in bulk polymers, fibres and textiles " test-methods for material flammability " material-specific aspects of combustion, smoke and toxicity. Fire retardant strategies covered, include the use of synergistic combinations of alumina with organoclay, organophosphorus compunds, silica and organosilicones, clay-phosphate combinations and a novel tecnhique for investigating fire rerardant behaviour. The section on nanoparticulate fillers includes an investigation on the effect of filler shape, the use of carbon nanofibres and nanotubes, the interpretation of nanocomposite behaviour in the cone calorimeter, and groundbreaking new research on the influence of rheological properties on burning behaviour. The coverage of fibres and textiles includes a discussion on trends in textile fire retardancy and flammability regulations, and some novel halogen-free approaches to fire retardancy of cellulose, acrylic and polypropylene textiles. Finally, the influence of fire retardants on fire toxicity is discussed in detail, followed by an investigation of the toxic products from burning fire retarded polymer nanocomposites. This book will update fire retardant materials' developers with latest in research and design of new fire retardant materials. It will also provide a snapshot of the state-of-the-art for a range of other groups including environmentalists looking for alternatives to brominated flame retardants and engineers needing to use fire safe materials in their projects.
Practical and affordable, thermoplastics account for more than 90 percent of all plastic materials manufactured. That so many varieties are now available, speaks to the idea that while there is no one perfect material, it is possible to find a material that fits for every application. However, selecting that right material is no small challenge. Answering the needs of manufacturers and product developers, Thermoplastic Materials: Properties, Manufacturing Methods, and Applications provides all the information required to confidently select the right thermoplastic for any application. Based on a course taught to engineering students, the book starts with an overview of the plastics industry, looking at the major companies involved and how their products influence society. It then discusses various topics essential to the understanding and manufacturing of thermoplastics before getting to the core of the book, more than 400 pages of consistently formatted entries, organized according to 19 thermoplastics families and groupings. Each chapter covers raw materials, manufacturing methods, properties, costs, and applications. Among many topics related to thermoplastic resins, this seminal work: Provides micro and quasi-macro perspectives on their behavior Evaluates major manufacturing methods Discusses crystallinity and permeability Elaborates on the properties that make them useful barrier and packaging materials Written by Christopher Ibeh, professor of plastics engineering technology and director of the Center for Nanocomposites and Multifunctional Materials at Pittsburg State University, this book goes beyond current practices to look at emerging materials, including nanocomposites, and discusses sustainability as it relates to plastics. It also includes a chapter on functionalized thermoplastics, written by Andrey Beyle.
Dendrimers are a new class of macromolecule increasingly used in the fields of synthetic organic chemistry, biology, medicine and biotechnology. Dendrimers in Medicine and Biotechnology: New Molecular Tools looks at this exciting and rapidly growing area of science. Using an interdisciplinary approach with particular emphasis on biological applications, the book discusses the relationship between the dendrimer molecular motif and its biological properties. A general introduction to the subject of dendrimers, including definitions of terms and symbols, is provided. Subsequent sections discuss topics including dendrimers in biological systems, dendrimers as drug delivery devices, dendrimers in diagnostics and dendrimer drugs. Throughout the book examples from current research are also provided. This book will appeal to a wide range of scientists, including non specialists who require an introduction to dendrimers, as well as those wishing to know more about the application of dendrimers in the field of biology and medicine.
Whether you realize it or not, you are probably already a collector of plastic cups. Just look in your kitchen cabinets and you'll find those plastic cups you didn't realize you were even collecting. The popularity of collecting plastic cups is rapidly increasing due to the latest collaborated marketing efforts between the fast food restaurant and movie industries in promoting a blockbuster movie while selling soft drinks. Plastic cup collecting is no longer just a hobby. The increasing interest and rapid growth of this newest market clearly demands that information and prices be made available to the expanding group of knowledgeable and novice collectors. In over 150 full color photographs, Bryan Meccareillo provides a complete guide to these new collectibles.
This book presents the chemical properties of lignocellulosic fibers, knowledge of which is essential for innovation and sustainable development of their transformation. Thermochemical transformation of wood and other lignocellulosics is presented to highlight its volatile, liquid and solid products and their novel applications. Forest biorefinery is described to emphasize the new products from lignocellulosic constituents, both structural (cellulose, hemicelluloses and lignins) and those extraneous to cell walls-extractives. New developments in cellulose technology related to nanocellulose are discussed in relation to new applications. Industrial lignins are presented in detail, both in terms of extraction procedures from spent liquors and structural characterization of the isolated lignins. Application of lignocellulosic biopolymers in new composite materials, or in biomaterials for medicinal purposes, and in solid wood preservation, are described. The example of an industrial biorefinery installed in southwestern France more than 40 years ago is presented.
Hydrogels are crosslinked, macromolecular polymeric materials arranged in a three-dimensional network, which can absorb and retain large amounts of water. Hydrogels are commonly used in clinical practice and experimental medicine for a wide range of applications, including drug delivery, tissue engineering and regenerative medicine, diagnostics, cellular immobilization, separation of biomolecules or cells, and barrier materials to regulate biological adhesions. This book elucidates the underlying concepts and emerging applications of hydrogels and will provide key case studies and critical analysis of the existing research.
Analytical pyrolysis allows scientists to use routine laboratory instrumentation for analyzing complex, opaque, or insoluble samples more effectively than other analytical techniques alone. Analytical Pyrolysis Handbook, Third Edition is a practical guide to the application of pyrolysis techniques to various samples and sample types for a diversity of fields including microbiology, forensic science, industrial research, and environmental analysis. The much-anticipated third edition incorporates recent technological advances that increase the technique's sensitivity to trace elements, improve its reproducibility, and expand its applicability. The book reviews the types of instrumentation available to perform pyrolysis and offers guidance for interfacing instruments and integrating other analytical techniques, including gas chromatography and mass spectrometry. Fully updated with new sample pyrograms, figures, references, and real-world examples, this edition also highlights new areas of application including cultural materials, forensic analysis, and environmental studies. This book illustrates how the latest advances make pyrolysis a practical, cost-effective, reliable, and flexible alternative for increasingly complex sample analyses. Analytical Pyrolysis Handbook, Third Edition is an essential, one-stop guide for determining if pyrolysis meets application-specific needs as well as performing pyrolysis and handling the data obtained.
This new work, Functional Polymeric Composites: Macro to Nanoscales, focuses on new challenges, findings, opportunities, and applications in the area of polymer composites. The chapters, written prominent researchers from academia, industry, and research institutes from around the world, present contemporary research and developments on advanced polymeric materials, including polymer blends, polymer electrolytes, bio-based polymer, polymer nanocomposites, etc. Several chapters also cover the applications of the polymeric systems in current industry development and synthesis and characterization of the products.
This volume provides in-depth knowledge and recent research on polymers and nanostructured materials from synthesis to advanced applications. Leading researchers from industry, academia, government, and private research institutions across the globe have contributed to this volume, covering new research on nanocomposites, polymer technology, and electrochemistry.
The Handbook of Polyhydroxyalkanoates (PHA) focusses on and addresses varying facets of PHA biosynthesis and processing, spread across three volumes. The first volume discusses feedstock aspects, enzymology, metabolism and genetic engineering of PHA biosynthesis. It addresses better understanding the mechanisms of PHA biosynthesis in scientific terms and profiting from this understanding in order to enhance PHA biosynthesis in bio-technological terms and in terms of PHA microstructure. It further discusses making PHA competitive for outperforming established petrol-based plastics on industrial scale and obstacles for market penetration of PHA. This second volume focusses on thermodynamic and mathematical considerations of PHA biosynthesis, bioengineering aspects regarding bioreactor design and downstream processing for PHA recovery from microbial biomass. It covers microbial mixed culture processes and includes a strong industry-focused section with chapters on the economics of PHA production, industrial-scale PHA production from sucrose, next generation industrial biotechnology approaches for PHA production based on novel robust production strains, and holistic techno-economic and sustainability considerations on PHA manufacturing. Third volume is on the production of functionalized PHA bio-polyesters, the post-synthetic modification of PHA, processing and additive manufacturing of PHA, development and properties of PHA-based (bio)composites and blends, the market potential of PHA and follow-up materials, different bulk- and niche applications of PHA, and the fate and use of spent PHA items. Divided into fourteen chapters, it describes functionalized PHA and PHA modification, processing and their application including degradation of spent PHA-based products and fate of these bio-polyesters during compositing and other disposal strategies. Aimed at professionals and graduate students in Polymer (plastic) industry, wastewater treatment plants, food industry, biodiesel industry, this set: Presents comprehensive and holistic consideration of these microbial bioplastics in the volumes. Enables reader to learn about microbiological, enzymatic, genetic, synthetic biology, and metabolic aspects of PHA biosynthesis based on the latest scientific discoveries. Discusses design and operate a PHA production plant. Strong focus on post-synthetic modification, preparation of functional PHA and follow-up products, and PHA processing. Covers all related engineering considerations
This book is intended to serve as a "one-stop" reference resource for important research accomplishments in the area of nanostructured polymer membranes and their processing and characterizations. It will be a very valuable reference source for university and college faculties, professionals, post-doctoral research fellows, senior graduate students, and researchers from R&D laboratories working in the area of polymer nanobased membranes. The various chapters are contributed by prominent researchers from industry, academia and government/private research laboratories across the globe and comprise an up-to-date record on the major findings and observations in the field.
Derived from the fourth edition of the well-known "Plastics Technology Handbook," Plastics Fundamentals, Properties, and Testing covers the behavior, characterization, and evaluation of polymers. With a lucid approach and wealth of valuable information, this volume looks at the remarkable versatility of this nonmetallic class of materials. Examining polymers at the molecular level, the book first discusses their inherent properties and how their end-use properties can be influenced through changes in the molecular architecture or incorporation of various fillers and additives. The authors coherently present a wide spectrum of topics by sequentially introducing structural aspects, properties, and applications. They then proceed to explore the mechanical, electrical, optical, and thermal properties of polymers, providing theoreticalderivations where necessary as well as explanations on molecular and structural features. To identify the principles involved, the book also furnishes the bases of many standard test methods according to ASTM and BS 2782 specifications.
This second volume of the "Handbook of Polyhydroxyalkanoates (PHA): Kinetics, Bioengineering and Industrial Aspects" focusses on thermodynamic and mathematical considerations of PHA biosynthesis, bioengineering aspects regarding bioreactor design and downstream processing for PHA recovery from microbial biomass. It covers microbial mixed culture processes and includes a strong industry-focused section with chapters on the economics of PHA production, industrial-scale PHA production from sucrose, next generation industrial biotechnology approaches for PHA production based on novel robust production strains, and holistic techno-economic and sustainability considerations on PHA manufacturing. Aimed at professionals and graduate students in Polymer (plastic) industry, wastewater treatment plants, food industry, biodiesel industry, this book Provides an insight into microbial thermodynamics to reveal the central domain governing in PHA formation, both aerobically and anaerobically. Includes systematic overview of mathematical modelling approaches, starting from low-structured and formal kinetic models until modern tools like metabolic models, cybernetic models and so forth Discusses challenges during scale up of PHA production processes and on development of non-sterile processes and contamination-resistant strains Presents a holistic picture of the current state of PHA research by mixed cultures Reviews the industry-related point of view about current and future trends in PHA production and processing
Written and edited by experts on specialty elastomers applications in the mechanical and automotive products industries, the Handbook of Specialty Elastomers provides a single source reference for the design of compounds using specialty elastomers. This book defines specialty elastomers as heat-, oil-, fuel-, and solvent-resistant polymers. Each chapter examines individual elastomers in terms of development history, chemical composition, structure, and properties as well as processing methods, applications, and commercially available products. Covering their applications in the rubber, energy, chemicals, and oil industries, the book also discusses the use of antioxidants, antiozonants, vulcanization agents, plasticizers, and process aids for specialty elastomers. The concluding chapter details considerations and relevant processes-such as molding operations-involved in designing application-specific rubber components. The Handbook of Specialty Elastomers provides comprehensive insight into the processes and challenges of designing rubber formulations and specialty elastomeric components.
Focusing on the applied and basic aspects of confined liquid crystals, this book provides a current treatise of the subject matter and places it in the broader context of electrooptic applications. The book takes an interdisciplinary approach to the subject, combining basic principles of physics, chemistry, polymer science, materials science and engineering.
Biomaterials have had a major impact on the practice of contemporary medicine and patient care. Growing into a major interdisciplinary effort involving chemists, biologists, engineers, and physicians, biomaterials development has enabled the creation of high-quality devices, implants, and drug carriers with greater biocompatibility and biofunctionality. The fast-paced research and increasing interest in finding new and improved biocompatible or biodegradable polymers has provided a wealth of new information, transforming this edition of Polymeric Biomaterials into a two-volume set. This volume, Polymeric Biomaterials: Structure and Function, contains 25 authoritative chapters written by experts from around the world. Contributors cover the following topics: The structure and properties of synthetic polymers including polyesters, polyphosphazenes, and elastomers The structure and properties of natural polymers such as mucoadhesives, chitin, lignin, and carbohydrate derivatives Blends and composites-for example, metal-polymer composites and biodegradable polymeric/ceramic composites Bioresorbable hybrid membranes, drug delivery systems, cell bioassay systems, electrospinning for regenerative medicine, and more Completely revised and expanded, this state-of-the-art reference presents recent developments in polymeric biomaterials: from their chemical, physical, and structural properties to polymer synthesis and processing techniques and current applications in the medical and pharmaceutical fields.
This book provides a comprehensive and updated insight into
dielectric elastomers; one of the most promising classes of
polymer-based smart materials and technologies. This technology can
be used in a very broad range of applications, from robotics and
automation to the biomedical field.
Analytical Methods for Polymer Characterization presents a collection of methods for polymer analysis. Topics include chromatographic methods (gas chromatography, inverse gas chromatography, and pyrolysis gas chromatography), mass spectrometry, spectroscopic methods (ultraviolet-visible spectroscopy, infrared spectroscopy, Raman spectroscopy, and nuclear magnetic resonance), thermal analysis (differential scanning calorimetry and thermogravimetry), microscopy methods (scanning electron microscopy, transmission electron microscopy, and atomic force microscopy), and x-ray diffraction. The author also discusses mechanical and dynamic mechanical properties.
The first book to tackle the application of smart polymers in bioseparation and bioprocessing, Smart Polymers: Applications in Biotechnology and Biomedicine broke new ground in this challenging field. Completely revised, updated, and following in the footsteps of its predecessor, the second edition is poised to take its place as a premier reference in this field. This new edition considers those polymers in which a highly nonlinear response of a smart polymer to small changes in the external medium is of critical importance for the successful functioning of the system. The systems discussed are based on soluble/insoluble transition of smart polymers in aqueous solution, on conformational transitions of the macromolecules physically attached or chemically grafted to a surface and on the shrinking/swelling of covalently cross-linked networks of macromolecules, i.e. smart hydrogels. The book focuses on the theory describing the behavior of smart polymers in solution, as gels, and when grafted to surfaces. It provides solid, quantitative descriptions and reliable guidelines, reflecting the maturation of the field and the demand for the development of new smart polymer systems. The coverage highlights smart gels and especially fast responding and macroporous gels, as these gels pave the way to different applications of smart polymers in the areas ofbioseparation, drug release, and microfluidics. With contributions from leading researchers as well as extensive end-of-chapter references, this volume offers a comprehensive overview of the current state-of-the-art in the field and the potential for future developments.
A Practical Guide to Understanding the NMR of Polymers presents an introduction to the theory and practice of NMR, and includes sections on the fundamental principles of NMR and the applications to polymers. This book will help readers understand how these methods can be used to determine the chemical structure of polymers that influences the macroscopic properties. Solid state NMR methods are introduced to enable the readers to measure the structure of polymers on longer length scales. It is also shown how NMR is used to measure the molecular dynamics that can be related to the mechanical properties of polymers.
Polyesters are one of the most important class of polymers in use today. Hundreds of polyesters exist although only about a dozen are of commercial significance. Polyesters are ubiquitous materials in modern life and are used in diverse applications from drink bottles and photographic film to shirts and fabrics. This book serves as a comprehensive, up-to-date reference and includes the following sections:
This work contains more than 20 contributions with experts from both academia and industry from North America, Europe, the Far East and Australia. An essential book for plastics engineers, polymer chemists, material scientists and those working in the plastics manufacturing and processing industries that deal with polyester resins.
"Covers recent advances in polymer degradation and stabilization. Focuses on the basics of photo- and bio-degradability. Delineates special and general environmental parameters such as solar irradiation, temperature, and agrochemical exposure. Surveys plastic waste disposal strategies such as recycling, incineration, chemical recovery by pyrolysis, and source reduction."
New fields of science and technology call for new materials with valuable performance characteristics. Long-term resistance to such temperatures can be found only in polymers with chains made up of thermostable fragments. Particularly interesting in this respect are elementorganic polymers with inorganic and organo-inorganic molecular chains. Elementorganic polymers are not only highly thermostable, but also perform well under low temperatures, sunlight, humidity, weather, etc. Thus, these polymers (especially silicones) are widely and effectively used in the electrical, radio, coal, mechanical rubber, aircraft, metallurgical, textile and other industries. They are of great utility not only in industry, but also in households and in medicine, where their merits can hardly be overestimated. The need to publish this book arose with the scientific and technical developments of the last decade, the reconstruction and technical renovation of existing factories, as well as fundamental changes in some syntheses of elementorganic monomers and polymers. Moreover, nowadays it is essential to train highly-skilled chemical engineers with a comprehensive knowledge of current chemistry, of the production technology of elementorganic monomers and polymers, and of their characteristics and applications. |
![]() ![]() You may like...
Multi-Agent-Based Simulations Applied to…
Diana Francisca Adamatti
Hardcover
R5,653
Discovery Miles 56 530
Nonlinear Approaches in Engineering…
Reza N. Jazar, Liming Dai
Hardcover
R4,682
Discovery Miles 46 820
Advanced H Control - Towards Nonsmooth…
Yury V. Orlov, Luis T. Aguilar
Hardcover
St Barnabas Pimlico - Ritual and Riots
Malcolm Johnson, Alan Taylor
Hardcover
R1,152
Discovery Miles 11 520
|