Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Plastics & polymers technology
From the late-1960's, perfluorosulfonic acid (PFSAs) ionomers have dominated the PEM fuel cell industry as the membrane material of choice. The "gold standard' amongst the many variations that exist today has been, and to a great extent still is, DuPont's Nafion (R) family of materials. However, there is significant concern in the industry that these materials will not meet the cost, performance, and durability requirementsnecessary to drive commercialization in key market segments - es- cially automotive. Indeed, Honda has already put fuel cell vehicles in the hands of real end users that have home-grown fuel cell stack technology incorporating hydrocarbon-based ionomers. "Polymer Membranes in Fuel Cells" takes an in-depth look at the new chem- tries and membrane technologies that have been developed over the years to address the concerns associated with the materials currently in use. Unlike the PFSAs, which were originally developed for the chlor-alkali industry, the more recent hydrocarbon and composite materials have been developed to meet the specific requirements of PEM Fuel Cells. Having said this, most of the work has been based on derivatives of known polymers, such as poly(ether-ether ketones), to ensure that the critical requirement of low cost is met. More aggressive operational requi- ments have also spurred the development on new materials; for example, the need for operation at higher temperature under low relative humidity has spawned the creation of a plethora of new polymers with potential application in PEM Fuel Cells.
Because of the sheer size and scope of the plastics industry, the title Developments in Plastics Technology now covers an incredibly wide range of subjects or topics. No single volume can survey the whole field in any depth and what follows is, therefore, a series of chapters on selected topics. The topics were selected by us, the editors, because of their immediate relevance to the plastics industry. When one considers the advancements of the plastics processing machinery (in terms of its speed of operation and conciseness of control), it was felt that several chapters should be included which related to the types of control systems used and the correct usage of hydraulics. The importance of using cellular, rubber-modified and engineering-type plastics has had a major impact on the plastics industry and therefore a chapter on each of these subjects has been included. The two remaining chapters are on the characterisation and behaviour of polymer structures, both subjects again being of current academic or industrial interest. Each of the contributions was written by a specialist in that field and to them all, we, the editors, extend our heartfelt thanks, as writing a contribution for a book such as this, while doing a full-time job, is no easy task.
This book deals with the micromechanical characterization of polymer materials. It emphasizes microhardness as a technique capable of detecting a variety of morphological and textural changes in polymers. The authors provide a comprehensive introduction to the microhardness of polymers, including descriptions of the various testing methods in materials science and engineering. They also discuss the micromechanical study of glassy polymers and the relevant aspects of microhardness of semicrystalline polymers. Numerous application examples of the microhardness technique for the characterization of polymeric materials help readers develop a solid understanding of the material. These real world examples include the influence of polymer processing, the use in weathering tests, the characterization of modified polymer surfaces, and others. This book will be of use to graduate level materials science students, as well as research workers in materials science, mechanical engineering and physics departments interested in the microindentation hardness of polymer materials.
Polymers exhibit a range of physical characteristics, from rubber-like elasticity to the glassy state. These particular properties are controlled at the molecular level by the mobility of the structural constituents. Remarkable changes in mobility can be witnessed with temperature, over narrow, well defined regions, termed relaxation processes. This is an important, unique phenomenon controlling polymer transition behaviour and is described here at an introductory level. The important types of relaxation processes from amorphous to crystalline polymers and polymeric miscible blends are covered, in conjunction with the broad spectrum of experimental methods used to study them. In-depth discussion of molecular level interpretation, including recent advances in atomistic level computer simulations and applications to molecular mechanism elucidation, are discussed. The result is a self-contained, up-to-date approach to polymeric interpretation suitable for researchers in materials science, physics and chemistry interested in the relaxation processes of polymeric systems.
Permeability properties are essential data for the selection of materials and design of products across a broad range of market sectors from food packaging to Automotive applications to Medical Devices. This unique handbook brings together a wealth of permeability data in a form that enables quick like-for-like comparisons between materials. The data is supported by a full explanation of its interpretation, and an introduction to the engineering aspects of permeability in polymers. The third edition includes expanded explanatory text which makes
the book accessible to novices as well as experienced engineers,
written by industry insider and author Larry McKeen (DuPont), and
20% new data and major new explanatory text sections to aid in the
interpretation and application of the data.
This book provides readers with a comprehensive toolbox for dispersing single-walled and multiwalled carbon nanotubes in thermoplastic polymer matrices. The book starts with an overview of all known techniques for dispersing CNTs in thermoplastic polymers and then concentrates on one of the most versatile techniques known nowadays: the so-called latex technology. Also discussed are the basic principles of this latex technology, the role of the matrix viscosity on percolation threshold, the importance of the intrinsic CNT quality, the use of "smart" surfactants facilitating electron transport in the final composite, the preparation of highly loaded master-batches, which can be diluted with virgin polymer by melt-extrusion, and some promising potential applications.
Radical polymerization is one of the most widely used means of producing vinyl polymers, supporting a myriad of commercial uses. Maintaining the quality of the critically acclaimed first edition, the Handbook of Vinyl Polymers: Radical Polymerization, Process, and Technology, Second Edition provides a fully updated, single-volume source on the chemistry, technology, and applications of vinyl polymers. Emphasizes radical initiating systems and mechanisms of action... Written by renowned researchers in the field, this handbook is primarily concerned with the physical and organic chemistry of radical vinyl polymerization. The authors survey the most recent advances, processing methods, technologies, and applications of free radical vinyl polymerization. The book features thorough coverage of polymer functionalization, photo initiation, block and graft copolymers, and polymer composites. Analyzes living/controlled radical polymerization, one of the latest developments in the field... Combining fundamental aspects with the latest advances, processing methods, and applications in free radical vinyl polymerization and polymer technology, this invaluable reference provides a unified, in-depth, and innovative perspective of radical vinyl polymerization.
The improvement of strength and durability in polymers has implications relevant to industrial, medical, and household applications. Enhanced by the improved knowledge of the interactions between complex hierarchical structures and functional requirements, Mechanical Properties of Polymers Based on Nanostructure and Morphology focuses on new polymer materials that possess a combination of improved mechanical and other physical properties. This book specifies techniques used in structural and morphological characterization, discusses crazing and molecular variables of fracture behavior, and clarifies various modes of deformation mechanisms and orientation processes for semicrystalline polymers, block copolymers, and composites. The volume examines microindentation hardness studies and mechanisms of toughness enhancement for particle modified, amorphous and semicrystalline polymers and blends using model analysis. Experts in the field present innovations that illustrate new aspects of manufacturing, structure development, and properties of practical relevance in nanoparticle-filled thermoplastic polymers and the applications of carbon nanotube and nanofiber reinforced polymer systems. Other topics discussed in the book include alternative methods of polymer modification based on micro- and nanolayered polymers and hot compaction of oriented fibers and tapes. This book reflects the continuing research of mechanisms contributing to the structure-function relationship of nanostructured polymers and nanocomposites. Mechanical Properties of Polymers Based on Nanostructure and Morphology presents effective ways to combine improved mechanical and physical properties in polymers and form new, performance-enhanced composite materials.
This book is an authoritative and comprehensive account of the principles and practice of NMR spectroscopy of solids as applied to polymeric materials to determine their structure and dynamics at a molecular level. NMR spectroscopy has been applied to the characterization of polymers in solid state for over 40 years. The past few decades have seen the development of many new NMR capabilities, including high-resolution techniques for solids, multi-dimensional methods, deuterium NMR and others. All of these developments have contributed to a dramatic increase in the power and applicability of NMR for the characterization, at a molecular level, of the dynamics and structural organization of polymeric solids. The applications chapters emphasize the polymer types and properties. The authors have included an introduction to all the main principles of the technique involved in its application to solid polymers. Rigorous and detailed analytical treatment of all main areas is also available.
Admired for their extraordinary stimuli-sensitive behavior and shape-changing capabilities, shape-memory polymers (SMPs) and multifunctional composites are among the most important smart materials. They continue to be widely applied in many diverse fields to create things such as self-deployable spacecraft structures, morphing structures, SMP foams, smart textiles, and intelligent medical devices. Written by renowned authors, Shape-Memory Polymers and Multifunctional Composites is a broad overview of the systematic progress associated with this emerging class of materials. The book presents an overview of SMPs and a detailed discussion of their structural, thermo-mechanical, and electrical properties, and their applications in fields including aeronautics, astronautics, biomedicine, and the automotive industry. Covering topics ranging from synthesis procedures to ultimate applications, this is a sound instructional text that serves as a guide to smart materials and offers an in-depth exploration of multifunctional SMPs and SMP composites, outlining their important role in the materials field. In each chapter, industry experts discuss different key aspects of novel smart materials, from their properties and fabrication to the actuation approaches used to trigger shape recovery. This comprehensive analysis explores the different functions of SMPs, the fundamentals behind them, and the ways in which polymers may reshape product design in general.
Recent advances not only in the creation of new polymers but also in their processing and production have ushered in huge strides in a variety of biomedical and clinical areas. Orthopedics and dentistry are two such areas that benefit immensely from developments in polymer science and technology. Polymers for Dental and Orthopedic Applications examines the most current topics in this expanding field with an emphasis on technological evolution and clinical impacts. Surveying major progress in polymer science and technology for dental, maxillofacial, and orthopedic applications, this book provides a unique illustration of the conceptual development of novel biomaterials and processes designed to meet targeted clinical needs. Two preeminent scientists lead a close-knit team of international experts with extensive experience in product development, bioengineering, education, and clinical applications. Ranging from polymeric materials for dental and maxillofacial application to joint repair and replacement, polymeric composites, and tissue engineering, the book also examines topics that are common to both dental and orthopedic fields, such as osseointegration and infection management. Explore the current status and future possibilities of polymeric biomaterials in Polymers for Dental and Orthopedic Applications. A unique blend of technical information and practical insight, this reference fosters the continued growth of a critically important field.
The novel properties of multifunctional polymer nanocomposites make them useful for a broad range of applications in fields as diverse as space exploration, bioengineering, car manufacturing, and organic solar cell development, just to name a few. Presenting an overview of polymer nanocomposites, how they compare with traditional composites, and their increasing commercial importance, Multifunctional Polymer Nanocomposites conveys the significance and various uses of this new technology for a wide audience with different needs and levels of understanding. Exploring definitions, architectures, applications, and fundamental principles of various functions of multifunctional polymeric smart materials-from bulk to nano-this book covers the use of multifunctional polymer nanocomposites in: Carbon nanotubes Electroactive and shape memory polymers Magnetic polymers Biomedical and bioinformation applications Fire-resistance treatments Coating technologies for aeronautical applications Ocean engineering A practical analysis of functional polymers, nanoscience, and technology, this book integrates coverage of fundamentals, research and development, and the resulting diversity of uses for multifunctional polymers and their nanocomposites. Quite possibly the first reference of its kind to explore the progress of polymer nanocomposites in terms of their multifunctionality, it covers both theory and experimental results regarding the relationships between the effective properties of polymer composites and those of polymer matrices and reinforcements. This book is a powerful informational resource that illustrates the importance of polymer nanomaterials, examining their applications in various sectors to promote new, novel research and development in those areas. It will be a welcome addition to the libraries of not only engineering researchers, but senior and graduate students in relevant fields.
The explores the cutting-edge technology of polymer coatings. It discusses fundamentals, fabrication strategies, characterization techniques, and allied applications in fields such as corrosion, food, pharmaceutical, biomedical systems and electronics. It also discusses a few new innovative self-healing, antimicrobial and superhydrophobic polymer coatings. Current industrial applications and possible potential activities are also discussed.
Lightweight and Sustainable Composites Materials: Preparation, Properties and Applications focuses on the synthesis, processing and characterization of these materials, their environmental sustainability features, compatibility with composites and their broad range of commercial and industrial application fields. The combination of being both lightweight and sustainable results in unique properties that make them suitable for a broad range of advanced commercial engineering applications. The book will be a valuable reference resource for academic and industrial researchers and material scientists and engineers working in the development of lightweight and sustainable composite materials. As recent studies on these materials reveal that they process excellent mechanical, electrical and thermal properties as well as improving environmental sustainability, this book is a welcomed resource.
Biopolymers are attracting immense attention of late because of their diverse applications that can address growing environmental concerns and energy demands. The development of various biomaterials creates significant advancements in the medical field as well, and many biopolymers are used for the fabrication of biomaterials. Together, biopolymers and biomaterials create great potential for new materials, applications, and uses. This new volume, Biopolymers and Biomaterials, covers the science and application of biopolymers and biomaterials. It presents an array of different studies on biopolymers and biomaterials, along with their results, interpretation, and the conclusions arrived at through investigations. It includes biopolymer synthesis, their characterizations, and their potential applications. The book begins with an explanation of the different biopolymers used in the textile industry, their advantages and disadvantages, and their applications.
Reflecting the exceptional growth in the use of nanostructured
materials for an increasing range of industrial applications,
Polymer Nanocomposites Handbook comprehensively covers the
synthesis of nanomaterials that act as the building blocks of
polymer nanocomposites and polymers that act as matrix
materials.
Polymer Blend Nanocomposites for Energy Storage Applications presents the latest developments in polymer blend-based nanocomposites for applications in energy storage, covering theoretical concepts, preparation methods, characterization techniques, properties and performance. The book begins by introducing polymer blend-based nanocomposites, preparation methods, mechanisms, requirements, theory, modeling, and simulation, with subsequent sections covering the use of specific base materials, including elastomers, thermoplastics, thermoset polymers, and biodegradable polymers. Final sections covers polymer blend nanocomposites with different fillers, both for conducting polymers and non-conducting polymers. Devices discussed include capacitors, supercapacitors, batteries, fuel cells, and solar cells. Finally, other key aspects are considered, including the conversion from laboratory to industry and recycling and lifecycle assessment of polymer blend nanocomposites used in energy devices.
Ceramic Matrix Composites: Lifetime and Strength Prediction Under Static and Stochastic Loading focuses on the strain response and lifetime prediction of fiber-reinforced ceramic-matrix composites under stress-rupture loading at intermediate temperatures. Typical damage mechanisms of matrix cracking, interface debonding and oxidation, and fiber's oxidation and fracture are considered in the micromechanical analysis. Effects of composite's constituent properties, peak stress, and testing temperature on the composite's strain response and lifetime are analyzed in detail. Comparison of constant and different stochastic stress spectrum on composite's damage evolution and fracture are also discussed. The book will be a practical guide for the material researcher and component designer needing to better understand the composite's damage and fracture behavior under stress-rupture loading at intermediate temperatures.
This book discusses the concept of single polymer composites (SPCs), their preparation, and properties and the main factors which affect the manufacturing of this class of composites. It deals with the leading classes of polymers, chapter wise, which have been majorly explored for manufacturing SPCs - polyolefins, polyesters, polyamides, and LCPs - includes a case study on manufacturing of SPCs, and devotes three chapters to detailed analyses of research on all-cellulose composites. Addressing the concerns of the researchers, it also answers intriguing questions in the field of SPCs with pointers to the right references. Key Features Presents a summary of single polymer composites based on various polymers Includes mechanical and thermal properties of single polymer composites Reviews detailed view of eco-friendly approaches to composites Offers a special focus on all-cellulose composites Supports concepts with figures, schemes, and tables
Today engineers, designers, buyers and all those who have to work
with plastics face a dilemma. There has been a proliferation of
test methods by which plastic properties are measured. The property
data measured by these test methods are not identical and sometimes
have large differences. How are engineers, designers, buyers going
to decide the type and resin grade and their property data? Which
are the valid test methods? The right plastic property data are the
difference between success and failure of a design, thus making the
property selection process critical. For the first time this book
provides a simple and efficient approach to a highly complex and
time consuming task. There are over 26,000 different grades of
polymers and millions of parts and applications, further adding to
the difficulty of the selection process.
Derived from the fourth edition of the well-known "Plastics Technology Handbook," Plastics Fabrication and Recycling presents the molding and fabrication processes of plastics as well as several important features of plastics recycling. The book begins with a discussion of different types of molds and dies, including compression molding, injection molding, blow molding, thermoforming, reaction injection molding, extrusion, and pultrusion. It then covers spinning, casting, reinforcing, foaming, compounding, and coating processes as well as powder molding, adhesive bonding, and plastics welding techniques. The authors also explore the decoration of plastics, including painting operations, printing processes, hot stamping, in-mold decorating, embossing, electroplating, and vacuum metallizing. They conclude with an overview on key aspects of plastics recycling, developments in the field, and waste recycling problems.
This book deals with the micromechanical characterization of polymer materials. It emphasizes microhardness as a technique capable of detecting a variety of morphological and textural changes in polymers. The authors provide a comprehensive introduction to the microhardness of polymers, including descriptions of the various testing methods in materials science and engineering. They also discuss the micromechanical study of glassy polymers and the relevant aspects of microhardness of semicrystalline polymers. Numerous application examples of the microhardness technique for the characterization of polymeric materials help readers develop a solid understanding of the material. These real world examples include the influence of polymer processing, the use in weathering tests, the characterization of modified polymer surfaces, and others. This book will be of use to graduate level materials science students, as well as research workers in materials science, mechanical engineering and physics departments interested in the microindentation hardness of polymer materials.
Advances in Structural Adhesive Bonding, Second Edition reviews developments in adhesive bonding for a range of advanced structural engineering applications. This new edition has been fully revised to include the latest advances in materials, testing and modeling methods, lifecycle considerations, and industrial implementation. Sections review advances in commonly used groups of structural adhesives, covering epoxy, acrylic, anaerobic and cyanoacrylate, polyurethane, and silicone adhesives, along with toughening. Other chapters cover various types of adherends and pre-treatment methods for structural materials, including metals, plastics, composites, wood and joint design and testing, including topics such as fracture mechanics, life prediction techniques, and advanced testing methods. This is a valuable guide for all those working with structural adhesives, including those in an industrial setting, adhesive specialists, structural engineers, design engineers, R&D professionals, and scientists, as well as academic researchers and advanced students in adhesives, joining technology, materials science and mechanical engineering.
Pultrusion: State-of-the-Art Process Models with Applications, Second Edition is a detailed guide to pultrusion, providing methodical coverage of process models and computation simulation, governing principles and science, and key challenges to help readers enable process optimization and scale-up. This new edition has been revised and expanded to include the latest advances, state-of-the-art process models, and governing principles. The main challenges in pultrusion, such as the process induced residual stresses, shape distortions, thermal history, species conversion, phase changes, impregnation of the reinforcements and pulling force are described, with related examples are provided. Moreover, strategies for having a reliable and optimized process using probabilistic approaches and optimization algorithms are summarized. Another focus of this book is on the thermo-chemical and mechanical analyses of the pultrusion process for industrial profiles. |
You may like...
ZIF-8 Based Materials for Pharmaceutical…
Awais Ahmad, Muhammad Pervaiz, …
Hardcover
R4,747
Discovery Miles 47 470
Polymer-Inorganic Nanostructured…
Kostyantyn M. Sukhyy, Elena A. Belyanovskaya
Hardcover
R6,737
Discovery Miles 67 370
100+ Years of Plastics - Leo Baekeland…
E. Thomas Strom, Seth Rasmussen
Hardcover
R5,405
Discovery Miles 54 050
Graphene Based Biopolymer Nanocomposites
Bhasha Sharma, Purnima Jain
Hardcover
R4,509
Discovery Miles 45 090
|