![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Plastics & polymers technology
Distinguishing among blends, alloys and other types of combinations, clarifying terminology and presenting data on new processes and materials, this work present up-to-date and effective compounding techniques for polymers. It offers extensive analyses on the challenging questions that surround miscibility, compatibility, dynamic processing, interaction/phase behaviour, and computer simulations for predicting behaviours of polymer mixture and interaction.
This volume reviews a wide range of processing methods which are currently being used for plastics and composites. Special focus lies on advancements in automation, in development of machines and new software for modeling, new materials for ease in manufacturing and strategies to increase productivity.
Flexible polyurenthane foams of all types are a unique group of plastics materials, characterized by the fact that different sets of properties can be obtained by varying the levels of a small number of base components in the formulations. This book discusses the methodology for obtaining meaningful equations for correlating properties.
Ranging from the basic principles to the forefront of microlithography, this unique volume explores the science and technology of lithographic processes and resist materials and summarizes the most recent innovations in semiconductor manufacturing. Considers future trends in lithography and resist material technology Reviewing the interaction of light, electron beams, and X-rays with resist materials, Microlithography Fundamentals in Semiconductor Devices and Fabrication Technology explains the theoretical basis of semiconductor fabrication presents the principles of optical image transfer discusses the chemical amplification of resist materials to improve sensitivity describes resolution enhancement and the limits of resolution in resist materials investigates contrast enhancement materials, multilayer resist, and dry development processes introduces a rigorous solution of two-dimensional light wave diffraction for the first time covers practical aspects of typical lithographic processes and more Featuring over 800 references, tables, drawings, photographs, and equations, Microlithography Fundamentals in Semiconductor Devices and Fabrication Technology is ideal for physicists; lithographic, electrical, optical, semiconductor, integrated circuit process, chemical, and process equipment engineers; resist and polymer chemists and photochemists; materials scientists; and upper-level undergraduate and graduate students in these disciplines.
Hybrid Polymer Composite Materials: Properties and Characterisation presents the latest on these composite materials that can best be described as materials that are comprised of synthetic polymers and biological/inorganic/organic derived constituents. The combination of unique properties that emerge as a consequence of the particular arrangement and interactions between the different constituents provides immense opportunities for advanced material technologies. This series of four volumes brings an interdisciplinary effort to accomplish a more detailed understanding of the interplay between synthesis, structure, characterization, processing, applications, and performance of these advanced materials, with this volume focusing on their properties and characterization.
The basic principles and mechanism of shape memory polymers, classification of shape memory polymers, and related characterization techniques are illustrated. Furthermore, an overview of the broad spectrum of applications in various fields for shape memory polymer is presented. Special focus will be given to hyperbranched, blended, interpenetrating and bio-based shape memory polymers, as well as shape memory polymer nanocomposites.
Morphology- Property Relationship in Rubber-Based Nanocomposites: Some Recent Developments, by A. K. Bhowmick, M. Bhattacharya, S. Mitra, K. Dinesh Kumar, P. K. Maji, A. Choudhury, J. J. George and G. C. Basak; * Rubber- Clay Nanocomposites: Some Recent Results, by Amit Das, De-Yi Wang, Klaus Werner St ckelhuber, Ren Jurk, Juliane Fritzsche, Manfred Kl ppel and Gert Heinrich; * Surface Modification of Fillers and Curatives by Plasma Polymerization for Enhanced Performance of Single Rubbers and Dissimilar Rubber/Rubber Blends, by J. W. M. Noordermeer, R. N. Datta, W. K. Dierkes, R. Guo, T. Mathew, A. G. Talma, M. Tiwari and W. van Ooij; * Recent Developments on Thermoplastic Elastomers by Dynamic Vulcanization, by R. Rajesh Babu and Kinsuk Naskar; * PTFE-Based Rubber Composites for Tribological Applications, by M. S. Khan and G. Heinrich Content Level Research
This is a new, basic introduction to polymer science. It is both
comprehensive and readable. The authors are leading educators in
this field with extensive backgrounds in industrial and academic
polymer research. The text starts with a description of the types
of microstructures found in polymer materials. This provides an
understanding of some of the key features of the various mechanisms
of homopolymerization and copolymerization which are discussed in
following chapters. Also discussed in these chapters are the
kinetics and statistics of polymerization, with a separate chapter
on the characterization of chain structure by spectroscopic
methods. The next part of the text deals with chain conformation,
structure and morphology, leading to a discussion of
crystallization, melting and glass transition. The discussion then
moves from solid state to solution properties where solution
thermodynamics is introduced. This provides the basis for
discussion of the measurement of molecular weight by various
solution methods.
This work provides comprehensive coverage of the basic theories and hands-on techniques of polymer toughening, demonstrating the similarities in methods of measurement and toughness enhancement found in various classes of polymeric materials, including foams, films, adhesives and moulding grade polymers. It provides a detailed overview, from historical and current points of view, of polymer toughening as practiced in industry, and lays the theoretical groundwork for the analysis and prediction of different modes of toughening.
Over recent years a considerable amount of effort has been devoted, both in industry and academia, towards the incorporation of various macro, micro and nano sized fillers into polymers. There is also much interest in the evaluation of various polymer properties with respect to a wide set of applications. The advances in nanotechnology together with the development in material sciences has improved the shortcomings of these materials over the decade. This book covers the latest advances in the field of polymer nanocomposites and polymer composites for varied applications. The major topics discussed in the book include: * Nanostructured materials for energy applications * Nanostructured polymercomposites * Bio-polymers * Nanostructured polymers for biomedical applications The book contains extended and updated research papers that were initially selected for the ICAMP-2017 conference which focused on advances in polymer materials. The book is ideal for researchers and practitioners in polymer science and materials science as well as for graduate students in polymer chemistry, materials science, nanotechnology and biomedical engineering.
"This outstanding reference presents the latest scientific findings concerning the synthesis, structure, thermodynamics, and physical and chemical properties of fluorine- and fluoride-carbon compounds elucidating their practical applications in lithium batteries, superhydrophobic composites, and the electrolytic production of elemental fluorine."
Elastomer Technology Handbook is a major new reference on the
science and technology of engineered elastomers. This contributed
volume features some of the latest work by international experts in
polymer science and rubber technology. Topics covered include
theoretical and practical information on characterizing rubbers,
designing engineering elastomers for consumer and engineering
applications, properties testing, chemical and physical property
characterization, polymerization chemistry, rubber processing and
fabrication methods, and rheological characterization. The book
also highlights both conventional and emerging market applications
for synthetic rubber products and emphasizes the latest technology
advancements.
A practical guide to polymer coatings that covers all aspects from materials to applications Polymer Coatings is a practical resource that offers an overview of the fundamentals to the synthesis, characterization, deposition methods, and recent developments of polymer coatings. The text includes information about the different polymers and polymer networks in use, resins for solvent- and water-based coatings, and a variety of additives. It presents deposition methods that encompass frequently used mechanical and electrochemical approaches, in addition to the physical-chemical aspects of the coating process. The author covers the available characterization methods including spectroscopic, morphological, thermal and mechanical techniques. The comprehensive text also reviews developments in selected technology areas such as electrically conductive, anti-fouling, and self-replenishing coatings. The author includes insight into the present status of the research field, describes systems currently under investigation, and draws our attention to yet to be explored systems. This important text: * Offers a thorough overview of polymer coatings and their applications * Covers different classes of materials, deposition methods, coating processes, and ways of characterization * Contains a text that is designed to be accessible and helps to apply the acquired knowledge immediately * Includes information on selected areas of research with imminent application potential for functional coatings Written for chemists in industry, materials scientists, polymer chemists, and physical chemists, Polymer Coatings offers a text that contains the information needed to gain an understanding of the charaterization and applications of polymer coatings.
Polymer science is a technology-driven science. More often than not, technological breakthroughs opened the gates to rapid fundamental and theoretical advances, dramatically broadening the understanding of experimental observations, and expanding the science itself. Some of the breakthroughs involved the creation of new materials. Among these one may enumerate the vulcanization of natural rubber, the derivatization of cellulose, the giant advances right before and during World War II in the preparation and characterization of synthetic elastomers and semi crystalline polymers such as polyesters and polyamides, the subsequent creation of aromatic high-temperature resistant amorphous and semi-crystal line polymers, and the more recent development of liquid-crystalline polymers mostly with n~in-chain mesogenicity. other breakthroughs involve the development of powerful characterization techniques. Among the recent ones, the photon correlation spectroscopy owes its success to the advent of laser technology, small angle neutron scattering evolved from n~clear reactors technology, and modern solid-state nuclear magnetic resonance spectroscopy exists because of advances in superconductivity. The growing need for high modulus, high-temperature resistant polymers is opening at present a new technology, that of more or less rigid networks. The use of such networks is rapidly growing in applications where they are used as such or where they serve as matrices for fibers or other load bearing elements. The rigid networks are largely aromatic. Many of them are prepared from multifunctional wholly or almost-wholly aromatic kernels, while others contain large amount of stiff difunctional residus leading to the presence of many main-chain "liquid-crystalline" segments in the "infinite" network.
Conducting polymers are organic polymers which contain conjugation along the polymer backbone that conduct electricity. Conducting polymers are promising materials for energy storage applications because of their fast charge-discharge kinetics, high charge density, fast redox reaction, low-cost, ease of synthesis, tunable morphology, high power capability and excellent intrinsic conductivity compared with inorganic-based materials. Conducting Polymers-Based Energy Storage Materials surveys recent advances in conducting polymers and their composites addressing the execution of these materials as electrodes in electrochemical power sources. Key Features: Provides an overview on the conducting polymer material properties, fundamentals and their role in energy storage applications. Deliberates cutting-edge energy storage technology based on synthetic metals (conducting polymers) Covers current applications in next-generation energy storage devices. Explores the new aspects of conducting polymers with processing, tunable properties, nanostructures and engineering strategies of conducting polymers for energy storage. Presents up-to-date coverage of a large, rapidly growing and complex conducting polymer literature on all-types electrochemical power sources. This book is an invaluable guide for students, professors, scientists, and R&D industrial specialists working in the field of advanced science, nanodevices, flexible electronics, and energy science.
"Biopolymers Reuse, Recycling and Disposal" is the first book covering all aspects of biopolymer waste management and post-usage scenarios, embracing existing technologies, applications, and the behavior of biopolymers in various waste streams. The book investigates the benefits and weaknesses, social, economic and environmental impacts, and regulatory aspects of each technology. It covers different types of recycling and degradation, as well as life cycle analysis, all supported by case studies, literature references, and detailed information about global patents. Patents in particular comprising 80% of published technical literature in this emerging field, widely scattered, and often available in Japanese only are a key source of information. Dr. Niaounakis draws on disciplines such as polymer science,
management, biology and microbiology, organic chemistry,
environmental chemistry, and patent law to produce a reference
guide for engineers, scientists and other professionals involved in
the development and production of biopolymers, waste management,
and recycling. This information is also valuable for regulators,
patent attorneys and academics working in this field.
Nanoscale control of order and orientation is essential for optimizing the performance of conjugated polymers. These semi-crystalline materials enable flexible devices for electronic, optical, electrochemical, and thermoelectric applications and are also of interest for the emerging fields of bioelectronics and spintronics.
The book provides a qualified and fast view into the world of TPE including the difference to rubber materials. It describes their classification as they are presented in the market, characterization, manufacturing, processing and behavior. Aside from the self-learning option, it is a companion to seminars and studies about elastomers.
The book defines the differences between synthetic and natural superabsorbent polymers. It describes polymerization techniques, processing strategies and the use and importance of smart SAPs. It also includes SAP design to aid in selection of the best SAP for a specific application. The book is an indispensible resource for any academics and industrials interested in SAPs.
The book introduces fundamental principles, phase structure, mechanism, mechanical properties, and different types of multicomponent polymers. Rheological properties, graft copolymers, block copolymers and interpenetrating polymer networks are discussed in detail as well. With abundant illustrations, it is an essential reference for polymer chemists, material scientists and graduate students.
Mechanochemistry has been recently ackwnoledged by IUPAC as one of the top ten emerging technologies in chemistry, answering to the increased demand for clean processes and sustainable reaction conditions. This book focuses on the rediscovery of mechanochemistry for inorganic, organic and organo-metallic materials. Focus on experimental techniques and equipment will show how to implement mechanochemistry as an innovative way to sustainability in academic laboratories. The contents are ideal for researchers starting off in industry and academia, as well as advanced students.
This book introduces the concepts of physical chemistry of polymers. It provides a basis to bridge polymer chemistry, which targets microscopic chain structures, and polymer engineering, which targets macroscopic material properties and functions. Topics covered are single chain statistics, multi-chain interactions, and chain dynamics, both from a viewpoint of structure, properties (mostly mechanical ones), and their interrelation. In all that, the author encourages the reader to think conceptually. |
You may like...
Skryf Afrikaans Van A Tot Z - Die…
Sebastian Pistor, Dalene Muller
Paperback
Modern Gas-Based Temperature and…
Franco Pavese, Gianfranco Molinar Min Beciet
Hardcover
R4,142
Discovery Miles 41 420
Pharos Afrikaanse Woordelys & Spelreëls
SA Akademie vir Wetenskap en Kuns
Paperback
(1)
|