![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Plastics & polymers technology
Outline proven methods from planning and manufacture to product testing, this work reports on the most effective means of producing plastics by the extrusion blow moulding process. It supplies data on materials, performance standards and testing methodologies developed in industry with proven reliability and cost effectiveness.
Chemistry has a vital role to play in materials processing and in the development of new materials that can meet the changing needs of today's technology. This volume addresses both the basic underlying principles and the technological relevance of major topics in advanced materials chemistry, including:
Bringing together a battery of important information in a single source, this stand-alone reference is an invaluable companion for aspiring and practicing organic, inorganic, solid-state, and surface chemists, as well as polymer and materials scientists.
Deals with a new and promising field developed during the last two decades on the boundary between homogeneous and heterogeneous catalysis. This book presents general information on catalysis for a wide range of organic reactions, e.g., hydrogenation and oxidation reactions, and polymerization transformations. Special attention is paid to electro- and photochemical stimulation of catalytic processes in the presence of immobilized metal complexes. Other topics covered are the quantitative data on the comparison of catalyses by mobile and immobilized metal complexes; main factors affecting the activity of these catalytic systems and methods of optimizing their control; and specific problems of catalysis by fixed complexes (e.g., ligand exchange and electron transfer in metal polymer systems, macromolecular effects and polyfunctional catalysis).
Large numbers of chemical engineers work with polymerization reactions and the problems and the challenges particular to the production of polymers. These problems have no counterparts in small-molecule reactions, and thus usually are neglected in standard reactor courses. This book provides a clearly written, comprehensive textbook on polymerization reactor engineering, appropriate for senior-level undergraduate and 1st- and 2nd-year graduate students. It focuses on polymer structure and structure-property relationships conditions that can play a role in dictating stucture.
The last 25 years have seen the introduction of numerous new fluoropolymers and fluoroelastomers and these developments have widened considerably the scope and applications of fluorine-containing polymers. Modern Fluoropolymers provides an overview of a comprehensive range of commercial fluoropolymers with an emphasis on structure/property behaviour and their diverse fields of application Topics covered include: crystalline and amorphous fluoropolymers, fluoroelastomers, coatings, sealants, linings, electrical properties, surface properties, effects of radiation, chemical resistance and failure modes of fluoropolymers. With chapters written by experts from industry and academia from North America, Europe, Japan, Australia and Russia, the book is truly international in scope and will be welcomed by researchers, processors and users of all types of fluoropolymers.
"Chronicles recent advances in our knowledge of polymer-surfactant systems, combining authoritative reviews of new experimental methods, instrumentation, and applications with fundamental discussions of classical methodologies and surveys of specific properties."
Ecological Assessment of Polymers Strategies for Product Stewardship and Regulatory Programs John D. Hamilton and Roger Sutcliffe The expense of providing ecological assessments of new commercial products is formidable. The cost of the failure to comply with the current regulations--measured in fines, liability damages, and loss of public trust--is potentially much, much higher. Establishing effective environmental product stewardship strategies for assessment upfront not only promotes initial and continued compliance, it can reduce costs via the more efficient development of new products. Based on the collaboration of the Rohm and Haas Company and S.C. Johnson Wax with other manufacturers, contract laboratories, universities, and government agencies, Ecological Assessment of Polymers is the first complete reference to provide environment-oriented information about polymers from a product development and regulatory compliance perspective. A number of books deal with the potential hazards of pesticides and solvents. This is the first to focus on the commercial synthetic polymers that exist in laundry detergents, paints, super-absorbent diapers, packaging materials, and many other consumer and industrial products. Using the principles of environmental toxicology and chemistry, Ecological Assessment of Polymers approaches environmental evaluation as a decision-making process. The book demonstrates how assessment can be used as a planning tool for developing products, reducing potential liability, and creating new products, processes, and disposal systems. Featured discussions:
Topics covered in this text include: structural aspects of polymers; molecular mobility in amorphous solid polymers; non-elastic deformation of solid amorphous polymers; mechanical experiments; interpretation of results; physical ageing of amorphous polymers; and glass transition.
Thermodynamics is an indispensable tool for developing a large and
growing fraction of new polymers and polymer blends.
Poled polymers doped with nonlinear optically active chromophores combine the large second order nonlinearity of the dopant dye molecules with the optical quality of the polymer. The material design flexibility afforded to doped polymers makes them attractive in a large variety of devices and applications. This book addresses the critical science and technology issues in the development and application of poled polymers, with an emphasis on the stabilization of poled polymers and their special applications to second harmonic generation (SHG) and electro-optic (EO) devices.
This book emphasizes the scientific origin of deformation and damage of FRP composites under various environmental effects and analyses present understanding on degradation mechanisms, role of interfaces and addition of nanofillers Discusses micro-characterization of composites and interfaces, also includes micro-mechanisms and microscopic evidences to establish the structure-property correlation Elucidates advantages and limitations of FRP composites in supercritical applications
"Combines fundamental theory, systematic experimentation, disciplined research, and logical procedures to simplify the thermoplastic selection process as well as reduce production cost and time. Second Edition contains new features such as rheology property data, recycling in resin selection, and more and more."
The potential application areas for polymer composites are vast.
While techniques and methodologies for composites design are
relatively well established, the knowledge and understanding of
post-design issues lag far behind. This leads to designs and
eventually composites with disappointing properties and
unnecessarily high cost, thus impeding a wider industrial
acceptance of polymer composites.
Cold hibernated elastic memory (CHEM) is an innovative, smart material technology that uses shape memory polymers in open cellular structures. This book extensively describes CHEM self-deployable structures, provides basic property data and characteristics, discusses advantages, and identifies numerous space, commercial, and medical applications. Some of these applications have been experimentally and analytically investigated with inspiring results and are revealed here. CHEM technology has a potential to provide groundbreaking self-deployable space structures. Some cutting-edge space CHEM concepts described in this book represent the introduction of a new generation of space deployable structures. CHEM materials have unique characteristics that enable the manufacture of self-deployable stents and other medical devices not possible currently. One of the medical applications, the CHEM endovascular treatment of aneurysm, is being experimentally explored with promising results that would save lives. This book provides a long list of interesting potential commercial CHEM applications that could simplify and make life easier at low cost. One of these products, the self-reconfiguring armchair, is already being set up for mass production. This book will be of interest to all engineering researchers, scientists, engineers, students, designers, and technologists across their relevant fields of interest. The exceptional characteristics of CHEM technology are presently enabling technologists to develop many applications ranging from outer space to inside the human body. As a result, CHEM structures are in the process of reshaping our thinking, approaches, and design methods in many ways that conventional materials and approaches do not allow.
Finally! An authoritative, comprehensive textbook in this
commercially and academically important field. Billions of
kilograms of polymers are manufactured annually in the form of
polymer colloids. Thousands of researchers work with them in a host
of applications, from water-borne latex paints to cancer
chemotherapeutics, but until now there was been no adequate
introductory text.
Increasing attention is being given to the use of concrete-polymer composites as high performance and multi-functional materials in the construction industry, as well as in mechanical, electrical and chemical engineering. Particular interest is being given to these materials in Japan and other East Asian countries. This book forms the proceedings of the Second East Asia Symposium on Polymers in Concrete (II-EASPIC) held under the auspices of the Japan Charter of ICPIC (the International Congress on Polymers in Concrete). Papers are presented by international experts from thirteen different countries. Many aspects of the subject are discussed, including: new developments in the theory and practice of polymer composites; studies of their performance; appropriate manufacturing techniques and materials selection processes; their structural design; various types of concrete using polymers; methods of restoration and conservation using composites; overlays; adhesives and coating used in concrete works, special innovative developments and techniques for recycling.
"Provides in-depth coverage of the entire thermoforming molding process from market domain and materials options to manufacturing methods and peripheral support. Second Edition furnishes entirely new information on twin sheet forming, corrugated tubing and pipe manufacturin gtechniques, plastics recycling, forthcoming equipment, and energy and labor costs."
This book presents the reports on the developments in the field of urethane. It includes information on polyurethane automotive carpet composites, pentane blown polyurethane foams, and applications of polyols derived from renewable resources in polyurethanes and liquid crystalline polyurethanes.
In current materials R&D, high priority is given to surface
modification techniques to achieve improved surface properties for
specific applications requirements. Plasma treatment and
polymerization are important technologies for this purpose.
Scientists and researchers are looking for new smart materials to replace old or conventional materials for better performance and for new applications. The use of polymeric materials and nanomaterials is increasing due to their wide-spectrum tunability and many properties. It is now easier to formulate materials for special purposes using these materials than using conventional materials and methods. Many commercial products made from polymeric materials and nanomaterials are now in use and on the market. This book presents a diverse selection of cutting-edge research on the development of polymeric materials and nanomaterials for new and different applications. These include electrical applications, biomedical applications, sensing applications, coating applications, and others. A few chapters dedicated to materials for construction applications are also included. Discussions include the properties, behavior, preparation, processing, and characterization of various polymeric materials, nanomaterials, and their composites. Some of the chapter authors present theoretical studies of these systems, which can help readers to develop a better understanding in this area.
This is the first book to provide an in-depth presentation of
photosensitive polyimides for electronic and photonic applications.
The authors are leading specialists in this field from Japan,
Europe and the U.S.
This work introduces the fundamental background necessary to understand polymer devolatilization. It elucidates the actual mechanisms by which the devolatilization of polymer melts progresses, and discusses virtually every type of devolatilization equipment available. The work also addresses devolatilization in various geometries and types of equipment, describing the use of falling strand, slit, single-screw, co-rotating and counter-rotating twin-screw devolatilization.
"Offers detailed coverage of applied polymer processing--presenting a wide range of technologies and furnishing state-of-the-art data on polymer components, properties, and processibility. Reviews fundamental rheological concepts. Contains over 1600 bibliographic citations, some 450 equations, and over 400 tables, drawings, and photographs."
Polymeric Gas Separation Membranes is an outstanding reference devoted to discussing the separation of gases by membranes. An international team of contributors examines the latest findings of membrane science and practical applications and explores the complete spectrum of relevant topics from fundamentals of gas sorption and diffusion in polymers to vapor separation from air. They also compare membrane processes with other separation technologies. This essential book will be valuable to all practitioners and students in membrane science and technology.
This work examines the science and technology used in the manufacture of acrylic fibre for both mass-produced commodity products and premium products. It elucidates the chemistry and fibre production techniques of speciality acrylics such as flame-retardant, water-reversible bicomponent, producer dyed and others. Capacity figures for developing countries are published here.;This work is intended for: polymer, fibre and textile scientists, chemists and engineers; physical and dye chemists; textile company managers; and upper-level undergraduate and graduate students in these disciplines. |
You may like...
Clean Energy and Resources Recovery…
Vinay Kumar Tyagi, Kaoutar Aboudi
Paperback
R3,581
Discovery Miles 35 810
Imaging of the Athlete, An Issue of…
Adam C. Zoga, Johannes B Roedl
Hardcover
R2,684
Discovery Miles 26 840
Radiography Essentials for Limited…
Bruce W. Long, Eugene D. Frank, …
Paperback
R2,404
Discovery Miles 24 040
The Future of HIV-1 Therapeutics…
Bruce E. Torbett, David S Goodsell, …
Hardcover
Handbook of Sociological Science…
Klarita Gerxhani, Nan D. De Graaf, …
Hardcover
R6,804
Discovery Miles 68 040
Mental and Neurological Public Health…
Vikram Patel, Alistair Woodward, …
Paperback
|