![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Plastics & polymers technology
This title gives an overview of composites and biocomposites. It discusses the history of CaPO4/ /polymer biocomposites and hybrid biomaterials, as well as analyzing the latest developments in the field. It also covers bioactivity and biodegradation of CaPO4-based biomaterials.
Explores the nature of relaxation phenomena in polymers on the basis of time-temperature equivalence. Its role in the physical and mechanical behavior of polymers materials and fundamentals of thermoplastics processing are discussed. Four appendixes detail thermo-mechanical methods to study relaxation in polymers, structure of both amorphous and semi-crystalline polymers, and unified approach to describe deformation of polymeric materials.
Conducting polymers are organic polymers which contain conjugation along the polymer backbone that conduct electricity. Conducting polymers are promising materials for energy storage applications because of their fast charge-discharge kinetics, high charge density, fast redox reaction, low-cost, ease of synthesis, tunable morphology, high power capability and excellent intrinsic conductivity compared with inorganic-based materials. Conducting Polymers-Based Energy Storage Materials surveys recent advances in conducting polymers and their composites addressing the execution of these materials as electrodes in electrochemical power sources. Key Features: Provides an overview on the conducting polymer material properties, fundamentals and their role in energy storage applications. Deliberates cutting-edge energy storage technology based on synthetic metals (conducting polymers) Covers current applications in next-generation energy storage devices. Explores the new aspects of conducting polymers with processing, tunable properties, nanostructures and engineering strategies of conducting polymers for energy storage. Presents up-to-date coverage of a large, rapidly growing and complex conducting polymer literature on all-types electrochemical power sources. This book is an invaluable guide for students, professors, scientists, and R&D industrial specialists working in the field of advanced science, nanodevices, flexible electronics, and energy science.
Covering fundamentals through applications, this book discusses environmentally friendly polymer nanocomposites and alternatives to traditional nanocomposites through detailed reviews of a variety of materials procured from different resources, their synthesis, and applications using alternative green approaches. The text: Describes green polymeric nanocomposites that show greater properties in terms of degradability, biocompatibility, synthesis process, cost effectiveness, mechanical strength, high surface area, nontoxicity, and environmental friendliness Explains the basics of eco-friendly polymer nanocomposites from different natural resources and their chemistry Discusses practical applications that present future directions in the biomedical, pharmaceutical, and automotive industries This book is aimed at scientists, researchers, and academics working in nanotechnology, biomaterials, polymer science, and those studying products derived from eco-friendly nanomaterials.
The book has five chapters, each containing invaluable information for PVC manufacturers, processors, and users. In the first introductory chapter, the new product development and product reengineering tools and market for PVC products are discussed. In the second chapter, polymer properties determining its proper selection are discussed. Commercial types and grades, polymer forms, and physical-chemical properties of PVC are discussed in detail. All essential information required for the decision-making process is presented in a clear form in order to provide the reader with the necessary data. The third chapter contains information aiding in the selection of any required additives. Twenty-four groups of additives are used in PVC processing to improve its properties and obtain the set of product characteristics required by the end-user. Similar to the previous chapter, the information is concise but contains much-needed data to aid the reader in product development and reformulation. The fourth chapter contains about 600 formulations of products belonging to 23 categories derived from characteristic methods of production. Formulations come from patents, publications in journals, and from suggestions of raw material suppliers. A broad selection of formulations is used in each category to determine the essential components of formulations used in a particular method of processing, the most important parameters of successful products, troubleshooting information, and suggestions of further sources of information on the method of processing. This part results from a review of thousands of patents, over two thousands of research papers, and information available from manufacturers of polymers and additives. The final chapter contains data on PVC and its products. The data are assigned to one of the following sections: general data and nomenclature, chemical composition and properties, physical properties, mechanical properties, health and safety, environmental information, use and application information. The data are based on information contained in over 1450 research papers and it presents the most comprehensive set of data on PVC ever assembled. The concept of this and a companion book (PVC Degradation & Stabilization, new edition will be published in 2015) is to provide the reader with complete information and data required to formulate successful and durable products or to evaluate formulations on the background of compositions used by others. For scientists and students, these two books give a complete set of the most up-to-date information, state-of-the-art, and data required for the development of new ideas and learning from a comprehensive review contributed by the author of 5 books on PVC written in the last 30 years.
A practical introduction to one of today's most exciting and rapidly growing areas of polymer science. Introduction to Ionomers affords chemists, engineers, and graduate students an opportunity to familiarize themselves quickly and thoroughly with one of today's most commercially important classes of polymers. Featuring a balanced, fully integrated presentation of basic science and state-of-the-art applications, the book provides the depth of knowledge researchers need to make optimal use of established ionomeric processes or to develop new systems of their own. The book's primary conceptual thrust is the relationship between polymeric architecture and polymeric morphology and properties when affected by ionic groups. While it provides in-depth coverage of all common classes of ionomeric materials—including polystyrenes, polyethylenes, polyurethanes, and polyacrylics—non-crystalline materials are emphasized over partly-crystalline materials. Co-author Adi Eisenberg, a leading ionomer pioneer and innovator, provides a uniquely intimate historical perspective on the field as it has developed over the past three decades. Newcomers to ionomers will appreciate the authors' clear and methodical presentations of difficult concepts, designed to promote rapid mastery of the core principles involved. The product of an exhaustive survey of the huge and rapidly growing world literature on the subject, Introduction to Ionomers is also an excellent resource for experienced professionals attempting to stay abreast of important recent developments in the field.
Semiconducting polymers are of great interest for applications in electroluminescent devices, solar cells, batteries, and diodes. This volume provides a thorough introduction to the basic concepts of the photophysics of semiconducting polymers as well as a description of the principal polymerization methods for luminescent polymers. Divided into two main sections, the book first introduces the advances made in polymer synthesis and then goes on to focus on the photophysics aspects, also exploring how new advances in the area of controlled syntheses of semiconducting polymers are applied. An understanding of the photophysics process in this kind of material requires some knowledge of many different terms in this field, so a chapter on the basic concepts is included. The process that occurs in semiconducting polymers spans time scales that are unimaginably fast, sometimes less than a picosecond. To appreciate this extraordinary scale, it is necessary to learn a range of vocabularies and concepts that stretch from the basic concepts of photophysics to modern applications, such as electroluminescent devices, solar cells, batteries, and diodes. This book provides a starting point for a broadly based understanding of photophysics concepts applied in understanding semiconducting polymers, incorporating critical ideas from across the scientific spectrum.
New micro and nanopatterning technologies have been developed in the last years as less costly and more flexible alternatives to phtolithograpic processing. These technologies have not only impacted on recent developments in microelectronics, but also in emerging fields such as disposable biosensors, scaffolds for tissue engineering, non-biofouling coatings, high adherence devices, or photonic structures for the visible spectrum. This handbook presents the current processing methods suitable for the fabrication of micro- and nanostructured surfaces made out of polymeric materials. It covers the steps and materials involved, the resulting structures, and is rounded off by a part on applications. As a result, chemists, material scientists, and physicists gain a critical understanding of this topic at an early stage of its development.
This book provides a definitive source of information on the chemical reaction engineering aspects of polymer production processes. Recent reviews in the USA by the Chemical Society and the Institute of Chemical Engineers have concluded that polymers will continue to grow in importance as they are tailored to suit specific applications. This book focuses on engineering aspects of reactor design and operation and, in particular, how the properties of polymers are determined by the relationships between chemical kinetics and mechanical design. This book should be of interest to chemical engineers who need to understand reaction engineering concepts and techniques for polymer systems as well as advanced students of polymer science and engineering, materials science and chemistry.
Much data has been collected from experiments on the kinetios of
radical reactions in different solids, but to date, this has not
been presented in book format in a thorough and comprehensive way.
This book makes the experimental data accessible for all chemists
involved in these reactions. Various models of the tunnel atom
transfer are analyzed in order to explain the kinetic isotope
effect in solid phase reactions and photoinitiated radical
reactions are inspected for the kinetic non-equivalence of
particles and factors affecting their reactivity. Topics covered
include:
The Handbook of Thermodynamic Data of Copolymer Solutions is the world's first comprehensive source of this vital data. Author Christian Wohlfarth, a chemical thermodynamicist specializing in phase equilibria of polymer and copolymer solutions and a respected contributor to the CRC Handbook of Chemistry and Physics, has gathered up-to-the-minute data from more than 300 literature sources. Fully committed to ensuring the reliability of the data, the author included results in the handbook only if numerical values were published or if authors provided their numerical results by personal communication. With volumetric, calormetric, and various phase equilibrium data on more than 165 copolymers and 165 solvents, this handbook furnishes: 250 vapor-pressure isotherms 75 tables of Henry's constants 50 LLE data sets 175 HPPE data sets 70 PVT data tables Carefully organized, clearly presented, and fully referenced, The Handbook of Thermodynamic Data of Copolymer Solutions will prove a cardinal contribution to the open literature and invaluable to anyone working with copolymers. CRC Handbook of Thermodynamic Data of Polymer Solutions, Three Volume Set CRC Handbook of Thermodynamic Data of Polymer Solutions at Elevated Pressures CRC Handbook of Thermodynamic Data of Aqueous Polymer Solutions CRC Handbook of Thermodynamic Data of Copolymer Solutions
This specialist monograph provides an overview of the recent research on the fundamental and applied properties of nanoparticles extracted from cellulose, the most abundant polymer on the planet and an ubiquitous essential renewable resource. Given the rapid advances in the field and the high level of interest within the scientific and industrial communities, this revised and updated second edition expands the broad overview of recent research and will be required reading for all those working with nanocellulose in the life sciences and bio-based applications, biological, chemical and agricultural engineering, organic chemistry and materials science. It combines a general introduction to cellulose and basic techniques with more advanced chapters on specific properties, applications and current scientific developments of nanocellulose. The book profits from the author's extensive knowledge of cellulose nanocomposite materials.
Biopolymers are attracting immense attention of late because of their diverse applications that can address growing environmental concerns and energy demands. The development of various biomaterials creates significant advancements in the medical field as well, and many biopolymers are used for the fabrication of biomaterials. Together, biopolymers and biomaterials create great potential for new materials, applications, and uses. This new volume, Biopolymers and Biomaterials, covers the science and application of biopolymers and biomaterials. It presents an array of different studies on biopolymers and biomaterials, along with their results, interpretation, and the conclusions arrived at through investigations. It includes biopolymer synthesis, their characterizations, and their potential applications. The book begins with an explanation of the different biopolymers used in the textile industry, their advantages and disadvantages, and their applications.
This informative volume discusses recent advancements in the research and development in synthesis, characterization, processing, morphology, structure, and properties of advanced polymeric materials. With contributions from leading international researchers and professors in academic, government and industrial institutions, Advanced Polymeric Materials for Sustainability and Innovations has a special focus on eco-friendly polymers, polymer composites, nanocomposites, and blends and materials for traditional and renewable energy. In this book the relationship between processing-morphology-property applications of polymeric materials is well established. Recent advances in the synthesis of new functional monomers has shown strong potential in generating better property polymers from renewable resources. Fundamental advances in the field of nanocomposite blends and nanostructured polymeric materials in automotive, civil, biomedical and packaging/coating applications are the highlights of this book.
This book provides a broad overview of current studies in the engineering of polymers and chemicals of various origins. The innovative chapters cover the growth of educational, scientific, and industrial research activities among chemists, biologists, and polymer and chemical engineers. This book publishes significant research and reviews reporting new methodologies and important applications in the fields of industrial chemistry, industrial polymers, and biotechnology, as well the latest coverage of chemical databases and the development of new computational methods and efficient algorithms for chemical software and polymer engineering.
This book deals with the polymers, different methods of synthesis, and synthesis of composites, as well as the different techniques used for polymer characterization. Most of the world's industries extract the anomalous properties of polymers to make excellent cost-effective materials. Because of this, the types of polymers, their processing, and the analysis of their various properties are very significant. Readers will gain a thorough knowledge about the processing of different types of polymers and composites made from them, as well as their various applications. Suitable for classroom use but especially important for researchers, this book addresses: Adhesion of amorphous polymers with vitrified bulk and surface glass transition Functionalized biopolymers and their applications A new synthesis of p-Cresol-Adipamide-Formaldehyde copolymer resin and its applications as an ion-changer Correlating performance of commercial viscosity modifiers for formulating shear stable industrial lubricants Synthesis of phthalonitrile polymers in ionic liquid and microwave media Studies on nanocomposite polymer electrolytes doped with Ca3(PO4)2 for lithium batteries
This book provides an abundance of information about the science and application of nanoparticles in the creation of nanocomposite materials, covering the synthesis, properties, and applications of nanomaterials. Written by experts in their fields, the chapters provide important updates on a number of aspects of nanomaterials and their practical applications to create new materials, particularly polymer composite materials. The book is an outgrowth of notes the authors have compiled and used to teach advanced courses on polymers for many years. Useful for engineers and researchers, the book also functions as a highly practical and useful ancillary text for advanced-level students studying nanomaterials and polymer science.
Through a balanced combination of theory and experiments, this book provides a detailed overview of the main and most up-to-date advances in the area of polymeric materials. Because the subject is essentially interdisciplinary and brings together scientists and engineers with different educational backgrounds, the book offers a research-oriented exposition of the fundamentals as well. The book is based on the editors' and authors' extensive experience in research, development, and education in the field of materials science, and especially polymer testing, polymer diagnostics, and failure analysis. A comprehensive coverage of the methods of polymer testing is provided along with the results of the authors' work on deformation and fracture behavior of polymers. This book will be useful to faculty as well as advanced-level students in materials science, materials technology, plastic technology, mechanical engineering, process engineering, and chemical engineering.
This book presents the analysis of up-to-date techniques used for the determination of acid-base properties in view of their applicability to examination of solid organic and inorganic surfaces. The studies have been carried out by the authors since 1993, showing experimental data on surface properties of more than 150 polymers, such as carbocatenary and heterochain polymers, copolymers and their blends, as well as different epoxy and rubber compositions used in adhesive joints. The adhesive ability of metal-polymer systems based on epoxy compositions, polyolefins, and rubbers was studied as a function of absolute difference in acid-base properties of adhesive and adherends, and the possibility to predict adhesive interaction on this basis was experimentally verified. The book shows the important role that acid-base interactions play in establishing interfacial adhesive-adherent contact and outlines practical recommendations regarding parameters of quantitative estimation of acid-base surface properties that implies the relationship with adhesive ability in polymer-metal systems. Creating polymeric materials with greater strength characteristics when in contact with metals is the most important problem when adhesive joints are designed. The authors obtained experimental data for thermodynamic and acid-base properties of about 200 organic and inorganic surfaces that find a wide practical application. These results may be used as a reference source to predict the adhesive ability of different coating systems. The possibility to predict adhesive interaction of adhesive with adherend, taking into account the absolute difference in their acidity and basicity, was verified experimentally.
With contributions from experts from both the industry and academia, this book presents the latest developments in polymer products and chemical processes. It incorporates appropriate case studies, explanatory notes, and schematics for more clarity and better understanding. This new book: * Features a collection of articles that highlight some important areas of current interest in polymer products and chemical processes * Gives an up-to-date and thorough exposition of the present state of the art of polymer chemistry * Familiarizes readers with new aspects of the techniques used in the examination of polymers, including chemical, physicochemical, and purely physical methods of examination * Describes the types of techniques now available to the polymer chemist and technician, and discusses their capabilities, limitations, and applications * Provides a balance between materials science and mechanics aspects, basic and applied research, and high-technology and high-volume (low-cost) composite development
This valuable book is devoted to problems of the synthesis, vulcanization, modification, and study of structure and properties of highly filled sealants based on polysulfide oligomers (PSO). The book summarizes information concerning chemistry, synthesis technology, structure, and properties of liquid thiokols and thiokol-containing polyesters. It also presents a literary survey on chemism and mechanisms for liquid thiokols vulcanization involving oxidants or through polyaddition. The book describes formulation principles of sealants, their properties, and application areas. The book provides research on vulcanization and modification of thiokol sealants involving thiokol-epoxy resin copolymers, unsaturated polyesters, and various isocyanate prepolymers. It describes studies of mechanisms underlying vulcanization of polysulphide oligomers by manganese dioxide, sodium dichromate and zinc oxide, and also of the structure and properties of sealants on the basis of a liquid thiokol and commercial " -2" polymer depending on a chemical nature and the ratio of constituent oligomers. The book gives information on the influence of filling materials on vulcanization kinetics, rheological, and physico-mechanical properties of sealants depending on the nature of PSO. The book will be of interest to research personnel of scientific institutes and centers developing reactive oligomers and their compositions and studying their structure and properties as well as engineers working in science centers or enterprises working in the area of development, production, and application of polysulfide oligomers and sealants.
This volume highlights the latest developments and trends in advanced polyblends and their structures. It presents the developments of advanced polyblends and respective tools to characterize and predict the material properties and behavior. The book provides important original and theoretical experimental results that use non-routine methodologies often unfamiliar to many readers. Furthermore chapters on novel applications of more familiar experimental techniques and analyses of composite problems are included, which indicate the need for the new experimental approaches that are presented. Technical and technological development demands the creation of new materials that are stronger, more reliable, and more durable-materials with new properties. Up-to-date projects in creation of new materials go along the way of nanotechnology. With contributions from experts from both the industry and academia, this book presents the latest developments in the identified areas. This book incorporates appropriate case studies, explanatory notes, and schematics for more clarity and better understanding. The book is designed as a textbook for postgraduate students, as a teaching support for the faculty, as a reference book for early research career beginners, and as a reference book for the scientific community at large for understanding the significance of modern materials and chemical engineering. This book will be useful for chemists, chemical engineers, technologists, and students interested in advanced nano-polymers with complex behavior and their applications This new book: * Gives an up-to-date and thorough exposition of the present state of the art of polyblends and composites * Familiarizes the reader with new aspects of the techniques used in the examination of polymers, including chemical, physicochemical, and purely physical methods of examination * Describes the types of techniques now available to the polymer chemist and technician and discusses their capabilities, limitations, and applications * Provides a balance between materials science and mechanics aspects, basic and applied research, and high-technology and high-volume (low-cost) composite development
The aim of this new compendium is to provide a solid understanding of the recent developments in advanced polymeric materials from macro- to nano-length scales. Composites are becoming more important because they can help to improve our quality of life, such as being put into service in flight vehicles, automobiles, boats, pipelines, buildings, roads, bridges, and dozens of other products, including medical products. The chapters cover a multitude of important advances, including explanations of the significance of the new fillers, like graphene and carbon nanotubes, in different matrix systems. Coverage of the application of these materials in biological and others fields also makes this book unique. Topics include advances on the processing, properties, recyclability, and reparability, and applications for polymer matrix composites, ceramic matrix composites, carbon matrix composites, wood-based composites, biocomposites, ecocomposites, nanocomposites, and more.
This book focuses on the recent trends in micro- and nano-structured polymer systems, particularly natural polymers, biopolymers, biomaterials, and their composites, blends, and IPNs. This valuable volume covers the occurrence, synthesis, isolation, production, properties and applications, modification, as well as the relevant analysis techniques to reveal the structures and properties of polymer systems. Biobased polymer blends and composites occupy a unique position in the dynamic world of new biomaterials. The growing need for lubricious coatings and surfaces in medical devices-an outcome of the move from invasive to noninvasive medicines and procedures-is playing a major role in the advancement of biomaterials technology. Natural polymers have attained their cutting-edge technology through various platforms, and this book presents a multitude of information about them. Topics include biopolymer-synthetic systems, nanomaterial-polymer structures, multi-characterization techniques, polymer blends and composites, polymer gels and polyelectrolytes, and many other interesting aspects of interests to researchers. This book will be valuable to scientists, physicians, pharmacists, engineers, and other specialists in a variety of disciplines, both academic and industrial.
This new volume explores the latest research on the use of alginate as a biopolymer in various biomedical applications and therapeutics. The uses of alginates and modified alginates discussed in this book include tissue regeneration, encapsulation and delivery of drugs, nucleic acid materials, proteins and peptides, genes, herbal therapeutic agents, nutraceuticals, and more. This book also describes the synthesis and characterizations of various alginate and modified alginate systems, such as hydrogels, gels, composites, nanoparticles, scaffolds, etc., used for the biomedical applications and therapeutics. Alginate, a biopolymer of natural origin, is of immense interest for its variety of applications in pharmaceuticals (as medical diagnostic aids) and in materials science. It is the one of the most abundant natural biopolymers and is considered an excellent excipient because of its non-toxic, stable, and biodegradable properties. Several research innovations have been made on applications of alginate in drug delivery and biomedicines. There needs to be a thorough understanding of the synthesis, purification, and characterization of alginates and its derivatives for their utility in healthcare fields, and this volume offers an abundance of information toward that end. |
![]() ![]() You may like...
Proceedings of the Second ISAAC Congress…
Heinrich G.W. Begehr, R.P. Gilbert, …
Hardcover
R5,767
Discovery Miles 57 670
Differential Equations with Linear…
Matthew R. Boelkins, Jack L. Goldberg, …
Hardcover
R3,047
Discovery Miles 30 470
Emission and Control of Trace Elements…
Yongchun Zhao, Hailong Li, …
Paperback
R4,450
Discovery Miles 44 500
Natural Language Processing for…
Mathias Soeken, Rolf Drechsler
Hardcover
R1,521
Discovery Miles 15 210
Venice Shall Rise Again - Engineered…
Giuseppe Gambolati, Pietro Teatini
Hardcover
FE Computation on Accuracy Fabrication…
Hong Zhou, Jiangchao WANG
Hardcover
R4,362
Discovery Miles 43 620
|