![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Plastics & polymers technology
It covers the synthesis, characterizations, and properties of natural polymeric systems, including their morphology, structure, and dynamics. It introduces the most recent innovations and applications of natural polymers and their composites in the food, construction, electronics, biomedical, pharmaceutical, and engineering industries.
Biodegradable and Biocompatible Polymer Composites: Processing, Properties and Applications begins by discussing the current state-of-the-art, new challenges and opportunities for various biodegradable and biocompatible polymer composite systems. Interfacial characterization of composites and the structure-property relationships in various composite systems are explained in detail via a theoretical model. Processing techniques for various macro and nanocomposite systems and the influence of processing parameters on properties of the composite are also reviewed in detail. The characterization of microstructure, elastic, visco-elastic, static and dynamic mechanical, thermal, rheological, optical, and electrical properties are highlighted, as are a broad range of applications. The book is a useful reference resource for both researchers and engineers working in composites materials science, biotechnology and nanotechnology, and is also useful for students attending chemistry, physics, and materials science and engineering courses.
Biopolymer Grafting: Applications presents the latest research and developments in the practical application of these methods in industry, both to enable polymer scientists and engineers to keep up with the latest research trends, as well as to propose ideas for further research and application. Research into bio-based polymers has become increasingly prevalent. However, due to challenges related to the properties of these materials compared to synthetic polymers-such as their resistance to chemicals or weather-uptake has not dramatically increased yet. As a result, improvements in surface modification of bio-polymers through graft copolymerization are enormously important, because they will widen the scope of their applications. Relevant industries for application of these methods include automotive, construction, food, packaging, agriculture, textiles and paper. This book provides an overview of the developments made in the area of biopolymer-based graft polymers. Advantages, disadvantages and suggestions for future works are discussed, assisting materials scientists and researchers in mapping out the future of these new "green" materials through value addition to enhance their use.
The design and development of dyes and chromophores have recently attracted much attention in various research fields such as materials, radiation curing, (laser) imaging, optics, medicine, microelectronics, nanotechnology, etc. In this book, the recent research for the use of dyes and chromophores in polymer science is presented. The interaction of the visible light with the dyes or the selected chromophores is particularly important in different fields (e.g. for photovoltaic, display applications (LED ...), laser imaging or laser direct writing, green chemistry with sunlight induced photopolymerization etc ...). This book gives an overview of the dyes and chromophores for all the important fields.
Natural Fiber-Reinforced Biodegradable and Bioresorbable Polymer Composites focuses on key areas of fundamental research and applications of biocomposites. Several key elements that affect the usage of these composites in real-life applications are discussed. There will be a comprehensive review on the different kinds of biocomposites at the beginning of the book, then the different types of natural fibers, bio-polymers, and green nanoparticle biocomposites are discussed as well as their potential for future development and use in engineering biomedical and domestic products. Recently mankind has realized that unless the environment is protected, he himself will be threatened by the over consumption of natural resources as well as a substantial reduction in the amount of fresh air produced in the world. Conservation of forests and the optimal utilization of agricultural and other renewable resources like solar, wind, and tidal energy, have become important topics worldwide. With such concern, the use of renewable resources-such as plant and animal-based, fiber-reinforced polymeric composites-are now becoming an important design criterion for designing and manufacturing components for a broad range of different industrial products. Research on biodegradable polymeric composites can contribute, to some extent, to a much greener and safer environment. For example, in the biomedical and bioengineering fields, the use of natural fiber mixed with biodegradable and bioresorbable polymers can produce joint and bone fixtures to alleviate pain in patients.
Provides description of functional foams, their manufacturing methods, properties, and applications Covers various blowing agents, greener methods for foaming, and emerging applicability Illustrates comparative information regarding polymeric foams and recent developments with polymer nanocomposite foams Includes applications in mechanical, civil, biomedical, food packaging, electronics, health care industry, and acoustics fields Reviews elastomeric foams and their nanocomposite derivatives
Materials Selection for Natural Fiber Composites covers the use of various tools and techniques that can be applied for natural fiber composite selection to expand the sustainable design possibilities and support cleaner production requirements. These techniques include the analytical hierarchy process, knowledge-based system, Java based materials selection system, artificial neural network, Pugh selection method, and the digital logic technique. Information on related topics, such as materials selection and design, natural fiber composites, and materials selection for composites are discussed to provide background information to the main topic. Current developments in selecting the natural fiber composite material system, including the natural fiber composites and their constituents (fibers and polymers) is the main core of the book, with in detailed sections on various technical, environmental and economic issues to enhance both environmental indices and the industrial sustainability theme. Recent developments on the analytical hierarchy process in natural fiber composite materials selection, materials selection for natural fiber composites, and knowledge based system for natural fiber composite materials selection are also discussed.
Biopolymer-Based Composites: Drug Delivery and Biomedical Applications presents a comprehensive review on recent developments in biopolymer-based composites and their use in drug delivery and biomedical applications. The information contained in this book is critical for the more efficient use of composites, as detailed up-to-date information is a pre-requirement. The information provided brings cutting-edge developments to the attention of young investigators to encourage further advances in the field of bio-composite research. Currently, biopolymers are being investigated for the design of various drug delivery and biomedical devices due to their non-toxic, biodegradable and biocompatible nature. Mostly, biopolymer-based solid orals, gels, hydrogel beads, and transdermal matrices have been designed in order to control drug/protein release in simulated bio-fluids.
Hybrid Polymer Composite Materials: Applications provides a clear understanding of the present state of-the-art and the growing utility of hybrid polymer composite materials. It includes contributions from world renowned experts and discusses the combination of different kinds of materials procured from diverse resources. In addition, this volume from the four volume series provides deep insights on the potential of hybrid polymer composite materials for advanced applications.
Hybrid Polymer Composite Materials: Processing presents the latest on these composite materials that can best be described as materials that are comprised of synthetic polymers and biological/inorganic/organic derived constituents. The combination of unique properties that emerge as a consequence of the particular arrangement and interactions between the different constituents provides immense opportunities for advanced material technologies. This series of four volumes brings an interdisciplinary effort to accomplish a more detailed understanding of the interplay between synthesis, structure, characterization, processing, applications, and performance of these advanced materials, with this volume focusing on their processing.
Hybrid Polymer Composite Materials: Volume 1: Structure and Chemistry presents the latest on these composite materials that can best be described as materials that are comprised of synthetic polymers and biological/inorganic/organic derived constituents. The combination of unique properties that emerge as a consequence of the particular arrangement and interactions between the different constituents provides immense opportunities for advanced material technologies. This series of four volumes brings an interdisciplinary effort to accomplish a more detailed understanding of the interplay between synthesis, structure, characterization, processing, applications, and performance of these advanced materials, with this volume focusing on their structure and chemistry.
Cellulose-Reinforced Nanofibre Composites: Production, Properties and Applications presents recent developments in, and applications of, nanocellulose as reinforcement in composite and nanocomposite materials. Written by leading experts, the book covers properties and applications of nanocellulose, including the production of nanocellulose from different biomass resources, the usefulness of nanocellulose as a reinforcement for polymer and paper, and major challenges for successful scale-up production in the future. The chapters draw on cutting-edge research on the use of nanosized cellulose reinforcements in polymer composites that result in advanced material characteristics and significant enhancements in physical, mechanical and thermal properties. The book presents an up-to-date review of the major innovations in the field of nanocellulose and provides a reference material for future research in biomass based composite materials, which is timely due to the sustainable, recyclable and eco-friendly demand for highly innovative materials made from biomass. This book is an ideal source of information for scientific and industrial researchers working in materials science.
Anticorrosive Rubber Lining discusses the state-of-the-art in this evolving industry, including sections on the best materials and formulations to use, what's best for a particular application, which repair technique is best for a given application, how long a rubber lining is likely to last, vulcanization parameters, and more. This book deals with the important field of anticorrosive rubber lining and its applications in various industries, including oil and gas, nuclear, aerospace, maritime, and many more, highlighting many of the technological aspects involved. The author offers a unique perspective due to the exclusiveness of the case histories presented, including many industrial rubber lining practices which are mostly kept within the industry. The technical information on rubber presented here is a practical tool to enable engineers to make the best use of rubber linings to prevent corrosion in chemical plants. The book includes valuable insights into bonding systems, surface preparation, and coating methodologies, and also covers failure analysis of failed systems.
Plastics in Medical Devices for Cardiovascular Applications enables designers of new cardiovascular medical devices to make decisions about the kind of plastics that can go into the manufacture of their device by explaining the property requirements of various applications in this area, including artificial valves, lead insulation, balloons, vascular grafts, and more.
Presents the state of the art in conductive composite materials and their application in flexible strain sensors Uniquely combines the processing, structure, properties, and applications of conductive polymer composites Integrates theory and practice Benefits plastics converters who wish to take full advantage of the potential of conductive plastic materials
This comprehensive volume provides current, state-of-the-art information on specialty polymers that can be used for many advanced applications. The book covers the fundamentals of specialty polymers, synthetic approaches, and chemistries to modify their properties to meet the requirements for special applications, along with current challenges and prospects. Chapters are written by global experts, making this a suitable textbook for students and a one-stop resource for researchers and industry professionals. Key Features: - Presents synthesis, characterization, and applications of specialty polymers for advanced applications. - Provides fundamentals and requirements for polymers to be used in many advanced and emerging areas. - Details novel methods and advanced technologies used in polymer industries. - Covers the state-of-the-art progress on specialty polymers for a range of advanced applications.
Brydson's Plastics Materials, Eighth Edition, provides a comprehensive overview of the commercially available plastics materials that bridge the gap between theory and practice. The book enables scientists to understand the commercial implications of their work and provides engineers with essential theory. Since the previous edition, many developments have taken place in plastics materials, such as the growth in the commercial use of sustainable bioplastics, so this book brings the user fully up-to-date with the latest materials, references, units, and figures that have all been thoroughly updated. The book remains the authoritiative resource for engineers, suppliers, researchers, materials scientists, and academics in the field of polymers, including current best practice, processing, and material selection information and health and safety guidance, along with discussions of sustainability and the commercial importance of various plastics and additives, including nanofillers and graphene as property modifiers. With a 50 year history as the principal reference in the field of plastics material, and fully updated by an expert team of polymer scientists and engineers, this book is essential reading for researchers and practitioners in this field.
Expanded PTFE Applications Handbook: Technology, Manufacturing and Applications is a comprehensive guide to ePTFE, explaining manufacturing technologies, properties, and applications. Technologies that were previously shrouded in secrecy are revealed in detail, as are the origins and history of ePFTE. The book is an essential handbook for scientists and engineers working in PTFE processing industries, and for manufacturers working with fluoropolymers. It is also of use to purchasing managers and academics.
Applied Plastics Engineering Handbook: Processing, Materials, and Applications, Second Edition, covers both the polymer basics that are helpful to bring readers quickly up-to-speed if they are not familiar with a particular area of plastics processing and the recent developments that enable practitioners to discover which options best fit their requirements. New chapters added specifically cover polyamides, polyimides, and polyesters. Hot topics such as 3-D printing and smart plastics are also included, giving plastics engineers the information they need to take these embryonic technologies and deploy them in their own work. With the increasing demands for lightness and fuel economy in the automotive industry (not least due to CAFE standards), plastics will soon be used even further in vehicles. A new chapter has been added to cover the technology trends in this area, and the book has been substantially updated to reflect advancements in technology, regulations, and the commercialization of plastics in various areas. Recycling of plastics has been thoroughly revised to reflect ongoing developments in sustainability of plastics. Extrusion processing is constantly progressing, as have the elastomeric materials, fillers, and additives which are available. Throughout the book, the focus is on the engineering aspects of producing and using plastics. The properties of plastics are explained, along with techniques for testing, measuring, enhancing, and analyzing them. Practical introductions to both core topics and new developments make this work equally valuable for newly qualified plastics engineers seeking the practical rules-of-thumb they don't teach you in school and experienced practitioners evaluating new technologies or getting up-to-speed in a new field.
Written by an expert with over 25 years experience in packaging, this book is a comprehensive guide to the use of plastic films in flexible packaging, covering scientific principles, properties, processes and end use considerations. The book brings the science of multilayer films to the practitioner in a concise and impactful way, providing the fundamental understanding required to improve product design, material selection and processes. This includes information on why one material is favoured over another for a particular application, or how the film or coating affects material properties. Detailed descriptions and analysis of the key properties of packaging films are provided from both an engineering and scientific perspective. End-use effects are also covered in detail, providing key insight into the way that the products being packaged influence film properties and design. The book bridges the gap between key scientific literature and
the practical challenges faced by the flexible packaging industry,
providing essential scientific insight, best practice techniques,
environmental sustainability information and key principles of
structure design to enable engineers and scientists to deliver
superior products with reduced development time and cost. A comprehensive reference book, providing essential information on all aspects of multilayer films in flexible packaging. Aids in material selection and processing, shortening development times and delivering stronger products. Bridges the gap between scientific principles and key challenges in the packaging industry, with practical explanations to assist practitioners in overcoming those challenges"
Polymer electrolytes are electrolytic materials that are widely used in batteries, fuel cells and other applications such as supercapacitors, photoelectrochemical and electrochromic devices. Polymer electrolytes: Fundamentals and applications provides an important review of this class of ionic conductors, their properties and applications. Part one reviews the various types of polymer electrolyte compounds, with chapters on ceramic polymer electrolytes, natural polymer-based polymer electrolytes, composite polymer electrolytes, lithium-doped hybrid polymer electrolytes, hybrid inorganic-organic polymer electrolytes. There are also chapters on ways of characterising and modelling polymer electrolytes. Part two discusses applications such as solar cells, supercapacitors, electrochromic and electrochemical devices, fuel cells and batteries. With its distinguished editors and international team of contributors, Polymer electrolytes: Fundamentals and applications is a standard reference for all those researching and using polymer electrolytes in such areas as battery and fuel cell technology for automotive and other applications.
Injection blow molding is one of the main processes used in the blow molding industry. And although you may find information on this topic in general books on blow molding, the coverage is skimpy and lacking in details. None of them supply the sharply focused, essential information you will find in Samuel Belcher's Practical Guide to Injection Blow Molding. Taking a straightforward approach, the book explores the entire industry from conception, design, costing, tooling, and machinery, to troubleshooting, testing, and daily production. The author, a highly knowledgeable industry insider, and a member of "The Plastics Hall of Fame," discusses the history of the industry, as well as the ins and outs and dos and don'ts of its daily workings, reinforcing the information in the text with pictures, charts, and figures. He instructs in product and tooling design and material and machine selection, explaining the advantages and the disadvantages and elaborating on efficiencies that can be realized. The book also details basic costing procedures considering resin costs, machine costs, tooling, labor, energy, floor space, overhead, and sales and administration.
Professional engineers engaged in the design and structural analysis of plastic components will appreciate this ground-breaking work, which uniquely applies the stress category approach to plastics materials. Written in an engaging, easy-to-read style, this reference offers a comprehensive discussion of various stress categories utilizing over 150 annotated, instructive examples. An overview of the theory of elasticity is presented along with techniques governing plastics design. From simple press-fits to matrix structural analysis, the concept of stress category analysis is introduced and utilized to discuss a wide range of practical problems more compactly. What to do with computed stress is the most pressing issue addressed in Applied Stress Analysis of Plastics, as Krishnamachari presents fresh methodologies to deal with these problems effectively. Stressing understanding over theory, Applied Stress Analysis of Plastics makes the perfect desktop reference for design and test engineers, or as an intermediate textbook for students.
Fluoroelastomers Handbook: The Definitive User's Guide, Second Edition is a comprehensive reference on fluoroelastomer chemistry, processing technology, and applications. It is a must-have reference for materials scientists and engineers in the automotive, aerospace, chemical, chemical process, and power generation industries. Covering both physical and mechanical properties of fluoroelastomers, it is useful in addressing daily challenges in the use of these materials, as well as the challenges posed in long-term research and development programs. Since the publication of the previous edition in 2005, many new findings and developments in chemistry, technology, and applications of fluoroelastomers have taken place. This is the only book with updated information on the manufacturing process, cross-linking chemistry and the formulation of compounds, as well as mixing, processing, and curing methods. A fully revised chapter is included on applications and examples of fluoroelastomer compounds. Safety, hygiene, and disposal standards and guidelines have been updated, and a new chapter has been added to discuss new developments and current trends, helping engineers and materials scientists stay ahead of the curve.
Chemical Resistance of Engineering Thermoplastics provides a comprehensive, cross-referenced compilation of chemical resistance data that explains the effect of thousands of reagents, the environment, and other exposure media on the properties and characteristics of engineering thermoplastics - plastics which are generally used in higher performance applications. A huge range of exposure media are included, from aircraft fuel to alcohol, corn syrup to hydrochloric acid, and salt to silver acetate. This information has been substantially updated, curated, and organized by the engineers at M-Base Engineering + Software, a leading supplier of material databases, material information systems, product information systems, and material related simulation software. This book is a must-have reference for engineers and scientists who are designing and working with plastics and elastomers in environments where they come into contact with corrosive or reactive substances, from food, pharmaceuticals, and medical devices to the automotive, aerospace, and semiconductor industries. |
You may like...
Recycling of Polyethylene Terephthalate…
Sabu Thomas, Ajay Vasudeo Rane, …
Hardcover
R3,977
Discovery Miles 39 770
Manufacturing Techniques for Polymer…
Suresh G. Advani, Kuang-Ting Hsiao
Hardcover
R4,673
Discovery Miles 46 730
Durability and Reliability of Medical…
Mike Jenkins, Artemis Stamboulis
Hardcover
R4,034
Discovery Miles 40 340
Resonance - Long-Lived Waves
Leonard Dobrzynski, Housni Al-Wahsh, …
Paperback
R3,925
Discovery Miles 39 250
Elastomer Blends and Composites…
Sanjay Mavinkere Rangappa, Jyotishkumar Parameswaranpillai, …
Paperback
R4,944
Discovery Miles 49 440
Fundamental Biomaterials: Polymers
Sabu Thomas, Preetha Balakrishnan, …
Paperback
|