![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Plastics & polymers technology
The design and development of dyes and chromophores have recently attracted much attention in various research fields such as materials, radiation curing, (laser) imaging, optics, medicine, microelectronics, nanotechnology, etc. In this book, the recent research for the use of dyes and chromophores in polymer science is presented. The interaction of the visible light with the dyes or the selected chromophores is particularly important in different fields (e.g. for photovoltaic, display applications (LED ...), laser imaging or laser direct writing, green chemistry with sunlight induced photopolymerization etc ...). This book gives an overview of the dyes and chromophores for all the important fields.
Concerned primarily with the determination of the size of polymer molecules in solution, their sequence structure and also molecular weight characteristics, this book includes contributions relating to molecular weight and molecular weight characteristics using conventional chromatographic techniques, spectroscopic techniques describing determination of sequence structure, and scattering techniques concerned with the determination of macromolecular size. The book will be invaluable for postgraduate and research polymer chemists and all those who are concerned with the study and use of macromolecular materials. The techniques described reflect some of the most recent advances which have been made in the development of methods for molar mass characterisation and also the size of molecules in solution and solid phases. The problem of molar mass characterisation is common to synthetic and biological polymers, hence this book will also be of interest to biologists, polymer engineers and technologists. Techniques covered include: Temperature Rising Elution Fractionation Field Flow Fractionation Static and Dynamic Light Scattering Neutron Scattering Vapour Pressure Osmometry/Viscometry Ultrafugation and Sedimentation Gel Electrophoresis of Biological Macromolecules Mass Spectrometry of Polymers
Self-Healing Materials: Principles and Technology is a practical book aimed at giving engineers and researchers in both industry and academia the information they need to deploy self-healing technology in a wide range of potential applications-from adhesives to the automotive industry, and from electronics to biomedical implants. Developments are increasingly seeing real-world application, and this book enables practitioners to use this technology in their own work. The book first discusses the principal mechanisms of self-healing and how these are applied to the development of materials which have the ability to repair themselves-either with minimal human intervention or without human intervention at all. The book provides a theoretical background and a review of the major research undertaken to date, to give a thorough grounding in this concept and related technology. The book specifically covers fault detection mechanisms in materials, and experimental methods to enable engineers to assess the efficiency of the self-healing process. It then discusses typical aids and additives in self-healing materials, including plasticizers, catalysts, shape-memory components, and more. Finally, the book contains real world examples of self-healing materials and how these have been applied to around 40 groups of products and industries, including materials used in the automotive industry, construction, composite materials for aerospace, biomaterials and materials used in medical devices, and adhesives and sealants.
Polymeric Foams: Innovations in Technologies and Environmentally Friendly Materials offers the latest in technology and environmental innovations within the field of polymeric foams. It outlines how application-focused research in polymeric foam can continue to improve living quality and enhance social responsibility. This book: Addresses technological innovations including those in bead foams, foam injection molding, foams in tissue engineering, foams in insulation, and silicon rubber foam Discusses environmentally friendly innovations in PET foam, degradable and renewable foam, and physical blowing agents Describes principles as well as applications from internationally recognized foam experts This work is aimed at researchers and industry professionals across chemical, mechanical, materials, polymer engineering, and anyone else developing and applying these advanced polymeric materials.
Natural Fiber-Reinforced Biodegradable and Bioresorbable Polymer Composites focuses on key areas of fundamental research and applications of biocomposites. Several key elements that affect the usage of these composites in real-life applications are discussed. There will be a comprehensive review on the different kinds of biocomposites at the beginning of the book, then the different types of natural fibers, bio-polymers, and green nanoparticle biocomposites are discussed as well as their potential for future development and use in engineering biomedical and domestic products. Recently mankind has realized that unless the environment is protected, he himself will be threatened by the over consumption of natural resources as well as a substantial reduction in the amount of fresh air produced in the world. Conservation of forests and the optimal utilization of agricultural and other renewable resources like solar, wind, and tidal energy, have become important topics worldwide. With such concern, the use of renewable resources-such as plant and animal-based, fiber-reinforced polymeric composites-are now becoming an important design criterion for designing and manufacturing components for a broad range of different industrial products. Research on biodegradable polymeric composites can contribute, to some extent, to a much greener and safer environment. For example, in the biomedical and bioengineering fields, the use of natural fiber mixed with biodegradable and bioresorbable polymers can produce joint and bone fixtures to alleviate pain in patients.
This book provides the latest technical information on sustainable materials that are feedstocks for additive manufacturing (AM). Topics covered include an up-to-date and extensive overview of raw materials, their chemistry, and functional properties of their commercial versions; a description of the relevant AM processes, products, applications, advantages, and limitations; prices and market data; and a forecast of sustainable materials used in AM, their properties, and applications in the near future. Data included are relative to current commercial products and are presented in easy-to-read tables and charts. Features Highlights up-to-date information and data of actual commercial materials Offers a broad survey of state-of the-art information Forecasts future materials, applications, and areas of R&D Contains simple language, explains technical terms, and minimizes technical lingo Includes over 200 tables, nearly 200 figures, and more than 1,700 references to technical publications, mostly very recent Handbook of Sustainable Polymers for Additive Manufacturing appeals to a diverse audience of students and academic, technical, and business professionals in the fields of materials science and mechanical, chemical, and manufacturing engineering.
Conducting polymers are versatile materials that possess both the unique properties of polymeric materials (elastic behavior, reversible deformation, flexibility, etc.) and the ability to conduct electricity with bulk conductivities comparable to those of metals and semiconductors. Conducting Polymers: Chemistries, Properties and Biomedical Applications provides current, state-of-the-art knowledge of conducting polymers and their composites for biomedical applications. This book covers the fundamentals of conducting polymers, strategies to modify the structure of conducting polymers to make them biocompatible, and their applications in various biomedical areas such as drug/gene delivery, tissue engineering, antimicrobial activities, biosensors, etc. FEATURES Covers the state-of-the-art progress on biodegradable conducting polymers for biomedical applications Presents synthesis, characterization, and applications of conducting polymers for various biomedical research Provides the fundamentals of biodegradation mechanisms and the role of conduction in biomedical devices Offers details of novel methods and advanced technologies used in biomedical applications using conducting polymers Highlights new directions for scientists, researchers, and students to better understand the chemistry, technologies, and applications of conducting polymers This book is essential reading for all academic and industrial researchers working in the fields of materials science, polymers, nanotechnology, and biomedical technology.
Fiber-reinforced polymer composites exhibit better damping characteristics than conventional metals due to the viscoelastic nature of the polymers. There has been a growing interest among research communities and industries in the use of natural fibers as reinforcements in structural and semi-structural applications, given their environmental advantages. Knowledge of the vibration and damping behavior of biocomposites is essential for engineers and scientists who work in the field of composite materials. Vibration and Damping Behavior of Biocomposites brings together the latest research developments in vibration and viscoelastic behavior of composites filled with different natural fibers. Features: Reviews the effect of various types of reinforcements on free vibration behavior Emphasizes aging effects, influence of compatibilizers, and hybrid fiber reinforcement Explores the influence of resin type on viscoelastic properties Covers the use of computational modeling to analyze dynamic behavior and viscoelastic properties Discusses viscoelastic damping characterization through dynamic mechanical analysis. This compilation will greatly benefit academics, researchers, advanced students, and practicing engineers in materials and mechanical engineering and related fields who work with biocomposites. Editors Dr. Senthil Muthu Kumar Thiagamani, Kalasalinagam Academy of Research and Education (KARE), India Dr. Md Enamul Hoque, Military Institute of Science and Technology (MIST), Bangladesh Dr. Senthilkumar Krishnasamy, King Mongkut's University of Technology North Bangkok KMUTNB, Thailand Dr. Chandrasekar Muthukumar, Hindustan Institute of Technology & Science (HITS), India Dr. Suchart Siengchin, King Mongkut's University of Technology North Bangkok KMUTNB, Thailand
Covers principles of Ionic Polymer Metal Composites (IPMC), manufacturing processes, applications and future possibilities in a systematic manner Highlights IPMC practical applicability in biomedical engineering domain Explores single-walled carbon nanotubes (SWNT) based IPMC soft actuators Discusses IPMC applications in underwater areas Includes IPMC application in robotics focussing on special compliant mechanism
Morphology- Property Relationship in Rubber-Based Nanocomposites: Some Recent Developments, by A. K. Bhowmick, M. Bhattacharya, S. Mitra, K. Dinesh Kumar, P. K. Maji, A. Choudhury, J. J. George and G. C. Basak; * Rubber- Clay Nanocomposites: Some Recent Results, by Amit Das, De-Yi Wang, Klaus Werner St ckelhuber, Ren Jurk, Juliane Fritzsche, Manfred Kl ppel and Gert Heinrich; * Surface Modification of Fillers and Curatives by Plasma Polymerization for Enhanced Performance of Single Rubbers and Dissimilar Rubber/Rubber Blends, by J. W. M. Noordermeer, R. N. Datta, W. K. Dierkes, R. Guo, T. Mathew, A. G. Talma, M. Tiwari and W. van Ooij; * Recent Developments on Thermoplastic Elastomers by Dynamic Vulcanization, by R. Rajesh Babu and Kinsuk Naskar; * PTFE-Based Rubber Composites for Tribological Applications, by M. S. Khan and G. Heinrich Content Level Research
Industrial Applications of Renewable Plastics: Environmental, Technological, and Economic Advances provides practical information to help engineers and materials scientists deploy renewable plastics in the plastics market. It explores the uses, possibilities, and problems of renewable plastics and composites to assist in material selection and rejection. The designer's main problems are examined, along with basic reminders that deal with structures and processing methods that can help those who are generally familiar with metals understand the unique properties of plastic materials. The book offers a candid overview of main issues, including conservation of fossil resources, geopolitical considerations, greenhouse effects, competition with food crops, deforestation, pollution, and disposal of renewable plastics. In addition, an overview of some tools related to sustainability (Life cycle assessments, CO2 emissions, carbon footprint, and more) is provided. The book is an essential resource for engineers and materials scientists involved in material selection, design, manufacturing, molding, fabrication, and other links in the supply chain of plastics. The material contained is of great relevance to many major industries, including automotive and transport, packaging, aeronautics, shipbuilding, industrial and military equipment, electrical and electronics, energy, and more.
Brydson's Plastics Materials, Eighth Edition, provides a comprehensive overview of the commercially available plastics materials that bridge the gap between theory and practice. The book enables scientists to understand the commercial implications of their work and provides engineers with essential theory. Since the previous edition, many developments have taken place in plastics materials, such as the growth in the commercial use of sustainable bioplastics, so this book brings the user fully up-to-date with the latest materials, references, units, and figures that have all been thoroughly updated. The book remains the authoritiative resource for engineers, suppliers, researchers, materials scientists, and academics in the field of polymers, including current best practice, processing, and material selection information and health and safety guidance, along with discussions of sustainability and the commercial importance of various plastics and additives, including nanofillers and graphene as property modifiers. With a 50 year history as the principal reference in the field of plastics material, and fully updated by an expert team of polymer scientists and engineers, this book is essential reading for researchers and practitioners in this field.
It covers the synthesis, characterizations, and properties of natural polymeric systems, including their morphology, structure, and dynamics. It introduces the most recent innovations and applications of natural polymers and their composites in the food, construction, electronics, biomedical, pharmaceutical, and engineering industries.
Expanded PTFE Applications Handbook: Technology, Manufacturing and Applications is a comprehensive guide to ePTFE, explaining manufacturing technologies, properties, and applications. Technologies that were previously shrouded in secrecy are revealed in detail, as are the origins and history of ePFTE. The book is an essential handbook for scientists and engineers working in PTFE processing industries, and for manufacturers working with fluoropolymers. It is also of use to purchasing managers and academics.
Applied Plastics Engineering Handbook: Processing, Materials, and Applications, Second Edition, covers both the polymer basics that are helpful to bring readers quickly up-to-speed if they are not familiar with a particular area of plastics processing and the recent developments that enable practitioners to discover which options best fit their requirements. New chapters added specifically cover polyamides, polyimides, and polyesters. Hot topics such as 3-D printing and smart plastics are also included, giving plastics engineers the information they need to take these embryonic technologies and deploy them in their own work. With the increasing demands for lightness and fuel economy in the automotive industry (not least due to CAFE standards), plastics will soon be used even further in vehicles. A new chapter has been added to cover the technology trends in this area, and the book has been substantially updated to reflect advancements in technology, regulations, and the commercialization of plastics in various areas. Recycling of plastics has been thoroughly revised to reflect ongoing developments in sustainability of plastics. Extrusion processing is constantly progressing, as have the elastomeric materials, fillers, and additives which are available. Throughout the book, the focus is on the engineering aspects of producing and using plastics. The properties of plastics are explained, along with techniques for testing, measuring, enhancing, and analyzing them. Practical introductions to both core topics and new developments make this work equally valuable for newly qualified plastics engineers seeking the practical rules-of-thumb they don't teach you in school and experienced practitioners evaluating new technologies or getting up-to-speed in a new field.
Written by an expert with over 25 years experience in packaging, this book is a comprehensive guide to the use of plastic films in flexible packaging, covering scientific principles, properties, processes and end use considerations. The book brings the science of multilayer films to the practitioner in a concise and impactful way, providing the fundamental understanding required to improve product design, material selection and processes. This includes information on why one material is favoured over another for a particular application, or how the film or coating affects material properties. Detailed descriptions and analysis of the key properties of packaging films are provided from both an engineering and scientific perspective. End-use effects are also covered in detail, providing key insight into the way that the products being packaged influence film properties and design. The book bridges the gap between key scientific literature and
the practical challenges faced by the flexible packaging industry,
providing essential scientific insight, best practice techniques,
environmental sustainability information and key principles of
structure design to enable engineers and scientists to deliver
superior products with reduced development time and cost. A comprehensive reference book, providing essential information on all aspects of multilayer films in flexible packaging. Aids in material selection and processing, shortening development times and delivering stronger products. Bridges the gap between scientific principles and key challenges in the packaging industry, with practical explanations to assist practitioners in overcoming those challenges"
Biopolymers represent a carbon emission solution: they are green and eco-friendly with a variety of uses in biomedical engineering, the automotive industry, the packaging and paper industries, and for the development of new building materials. This book describes the various raw materials of biopolymers and their chemical and physical properties, the polymerization process, and the chemical structure and properties of biopolymers. Furthermore, this book identifies the drawbacks of biopolymers and how to overcome them through modification methods to enhance the compatibility, flexibility, physicochemical properties, thermal stability, impact response, and rigidity.
Modification of Polymer Properties provides, for the first time, in one title, the latest information on gradient IPNs and gradient copolymers. The book covers the broad range of polymer modification routes in a fresh, current view representing a timely addition to the technical literature of this important area. Historically, blends, copolymers, or filled polymers have been developed to meet specific properties, or to optimize the cost/properties relationship. Using the gradient structure approach with conventional radical polymerization, it has been shown that it is possible to optimize properties if appropriate gradients in the composition of copolymer chains are obtained. An overview of the gradient structure approach for designing polymers has not appeared in the recent literature and this title covers the different methods used to modify properties, offering the whole range of ways to modify polymers in just one volume and making this an attractive option for a wide audience of practitioners. The approach for each chapter is to explain the fundamental principles of preparation, cover properties modification, describe future research and applications as examples of materials that may be prepared for specific applications, or that are already in use, in present day applications. The book is for readers that have a basic background in polymer science, as well as those interested in the different ways to combine or modify polymer properties.
Polymer electrolytes are electrolytic materials that are widely used in batteries, fuel cells and other applications such as supercapacitors, photoelectrochemical and electrochromic devices. Polymer electrolytes: Fundamentals and applications provides an important review of this class of ionic conductors, their properties and applications. Part one reviews the various types of polymer electrolyte compounds, with chapters on ceramic polymer electrolytes, natural polymer-based polymer electrolytes, composite polymer electrolytes, lithium-doped hybrid polymer electrolytes, hybrid inorganic-organic polymer electrolytes. There are also chapters on ways of characterising and modelling polymer electrolytes. Part two discusses applications such as solar cells, supercapacitors, electrochromic and electrochemical devices, fuel cells and batteries. With its distinguished editors and international team of contributors, Polymer electrolytes: Fundamentals and applications is a standard reference for all those researching and using polymer electrolytes in such areas as battery and fuel cell technology for automotive and other applications.
Forensic Polymer Engineering: Why Polymer Products Fail in Service, Second Edition presents and explains the latest forensic engineering techniques used in the investigation of failed polymer materials that are illustrated with a very large number of detailed case studies which show the different types of failure and the forensic engineering techniques used in their investigation. In this updated edition, new case studies have been added to include patent disputes and failed products such as spiral wound wall storage tanks, lithium battery explosions, water bottle failures, and breast implant failures (such as the PIP scandal). New images demonstrating failure have been included, and images from the previous edition are reproduced in color and enhanced with additional explanatory detail. With a dedicated focus on polymeric materials, the book includes details on the experimental techniques that are used to characterize the materials, particularly in cases of failure. Finally, the book has information on the fabrication of polymer devices, as manufacturing flaws often play a role in failure.
Fluoroelastomers Handbook: The Definitive User's Guide, Second Edition is a comprehensive reference on fluoroelastomer chemistry, processing technology, and applications. It is a must-have reference for materials scientists and engineers in the automotive, aerospace, chemical, chemical process, and power generation industries. Covering both physical and mechanical properties of fluoroelastomers, it is useful in addressing daily challenges in the use of these materials, as well as the challenges posed in long-term research and development programs. Since the publication of the previous edition in 2005, many new findings and developments in chemistry, technology, and applications of fluoroelastomers have taken place. This is the only book with updated information on the manufacturing process, cross-linking chemistry and the formulation of compounds, as well as mixing, processing, and curing methods. A fully revised chapter is included on applications and examples of fluoroelastomer compounds. Safety, hygiene, and disposal standards and guidelines have been updated, and a new chapter has been added to discuss new developments and current trends, helping engineers and materials scientists stay ahead of the curve.
Chitin is the second most abundant natural polymer in the world after cellulose, mainly derived from the food waste of shrimp and crabs. Chitosan is the most important derivative of chitin. Thanks to their biodegradability, non-toxicity, biocompatibility, bioactivity, and versatile chemical and physical properties, chitin and chitosan derivatives are used in a wide variety of applications, including water treatment, cosmetics and toiletries, food and beverages, healthcare/medical, and agrochemicals. Chitin and Chitosans in the Bioeconomy covers all major aspects of chitin and chitosan, including structure, biosynthesis, biodegradation, properties of chitin and derivatives, applications, and market. It offers a special focus on the bioeconomy, which is the renewable segment of the circular economy. Describes the structure, biosynthesis, and biodegradation of chitin and chitosan Covers chitin- and chitosan-based products Details valorization of these materials Presents information on shell biorefineries Chitin and Chitosans in the Bioeconomy serves as a reference for polymer scientists and engineers and is also accessible to economists and advanced students.
Advances in Women's Intimate Apparel Technology discusses the design and manufacture of intimate apparel and how the industry is increasingly embracing novel materials, new technologies, and innovations in sizing and fit. The book reviews the ways in which new materials and methods are improving the range, function, and quality of intimate apparel, with particular focus on brassiere design. Part One introduces the advanced materials used for intimate apparel, including novel fabrics and dyes and finishes, along with materials for wiring and embellishments. Part Two discusses the role of seamless technology in intimate apparel production, covering lamination, moulding, and seamless knitting. Finally, Part Three reviews advances in design, fit, and performance.
Active Coatings for Smart Textiles presents the latest information on active materials and their application to textiles in the form of coatings and finishes for the purpose of improving performance and creating active functional effects. This important book provides detailed coverage of smart coating types, processes, and applications. After an introduction to the topic, Part One introduces various types of smart and active coatings, including memory polymer coatings, durable and self-cleaning coatings, and breathable coatings. Technologies and related processes for the application of coatings to textiles is the focus of Part Two, with chapters devoted to microencapsulation technology, plasma surface treatments, and nanotechnology-based treatments. The book ends with a section on applications of smart textiles with responsive coatings, which are increasingly finding commercial niches in sportswear, protective clothing, medical textiles, and architecture. |
![]() ![]() You may like...
Sustainable Composites for Aerospace…
Mohammad Jawaid, Mohamed Thariq
Paperback
Thermal Degradation of Polymeric…
Krzysztof Pielichowski, James Njuguna, …
Paperback
R4,838
Discovery Miles 48 380
3D and 4D Printing of Polymer…
Kishor Kumar Sadasivuni, Kalim Deshmukh, …
Paperback
R5,761
Discovery Miles 57 610
Green Sustainable Process for Chemical…
Dr. Inamuddin, Tariq Altalhi
Paperback
R4,727
Discovery Miles 47 270
|