![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Plastics & polymers technology
Polymeric Nanocomposite Materials for Sensor Applications covers all the important aspects of polymer composite-based sensors, from fundamentals to fabrication. Key chapters focus on the materials used for sensors and their characterization, properties, fabrication and classification. Various applications of polymeric sensors are also discussed in detail. This book is an essential reference resource, not only for the materials scientist, but also for researchers, academics, technologists and students working in the sensor technology industry. In modern society, sensors are used in electronics, food packaging, construction, automobile and aerospace applications. The advancement of smart technologies has increased their usage because of their affordability and reliability. Among the materials used for the fabrication of sensors, polymer composites are the most preferred because they are lightweight, versatile, low cost and easy to process.
This is a complete illustrated guide and reference to today's plastic films for packaging. All significant aspects of plastic films for packaging are clearly and concisely presented: from materials, processes and machinery to applications and regulatory, social and economic considerations. More than 70 schematics illustrate materials, processes and package constructions. More than 30 tables provide important reference data in convenient form. The authors are leading authorities on plastic packaging films with first-hand experience in the R&D of many of today's widely used films. Published in cooperation with the Institute of Packaging Professionals.
The book is an excellent reference for scientists, researchers and students working in the field of areas of biopolymeric biomaterials, biomedical engineering, therapeutics, tissue engineering and regenerative medicine. The book is divided into two parts: Part I will focus on the tissue engineering and Part II focuses on therapeutics, functionalization and computer-aided techniques. The book consists of 13 chapters contributed by 20 international contributors who are leading experts in the field of biopolymers and its applications. It will focus on the advancements of chitin and chitosan in regenerative medicine. Regenerative medicine in tissue engineering is the process of replacing or regenerating human cells, tissues, or organs to restore or establish normal function. It is an incredibly progressive field of medicine that may, in the near future, help with the shortage of life-saving organs available through donation for transplantation vis-a-vis regenerative medicine focuses on therapeutics, functionalization and computer-aided techniques. It also covers physical and chemical aspects of chitin and chitosan, structural modifications for biomedical applications, chitosan based scaffolds and biomodelling in tissue engineering, nanomedicines and therapeutic applications. With the broad range of applications, the world is waiting for biopolymers to serve as the basis for regenerative medicine and biomedical applications.
Expanding Monomers: Synthesis, Characterization, and Applications provides a thorough discussion of expanding polymer systems and their potential applications. The scope of the book includes background information on conventional monomers, their polymeric systems, and associated shrinkage problems. Monomers that expand during polymerization are covered in detail, including their synthesis and characterization. Polymerization (homopolymerization and copolymerization) of expanding monomers is discussed, in addition to mechanisms and kinetics of several polymerization processes, such as cationic initiation and free radical ring-opening polymerization. The book also explores various applications in which expanding polymer systems have potential. These applications include coatings, casting and potting materials, composite adhesives, and electrical insulations. Expanding Monomers: Synthesis, Characterization, and Applications will be valuable as a reference for manufacturers, researchers, teachers, and students in polymer and materials science, in addition to industry and university libraries.
1. Highlights recent advances in material science and armour technology 2. Provides information on computational methods for armour design 3. Discusses stress waves and penetration mechanics 4. Covers human vulnerability and reactive armour systems
Saponins are glycosides of triterpenes, steroids or steroidal alkaloids. They can be found in plants and marine organisms. Very diverse biological activities are ascribed to saponins and they play important roles in food, animal feedstuffs, and pharmaceutical properties. This volume provides a selection of recent work on saponins presented at a symposium in Pulawy, Poland, in 1999. Many different aspects are treated: analysis, separation, biological activities, relevant use in human and animal nutrition, and ecological significance. This book will be of use to researchers both in universities and industry.
A comprehensive account of the physical / mechanical behaviour of polyurethanes (PUs) elastomers, films and blends of variable crystallinity. Aspects covered include the elasticity and inelasticity of amorphous to crystalline PUs, in relation to their sensitivity to chemical and physical structure. A study is made of how aspects of the constitutive responses of PUs vary with composition: the polyaddition procedure, the hard segment, soft segment and chain extender (diols and diamines) are varied systematically in a large number of systems of model and novel crosslinked andthermoplastic PUs. Results will be related to: microstructural changes, on the basis of evidence from x-ray scattering (SAXS and WAXS), and also dynamic mechanical analyses (DMA), differential scanning calorimetry (DSC) and IR dichroism. Inelastic effects will be investigated also by including quantitative correlations between the magnitude of the Mullins effect and the fractional energy dissipation by hysteresis under cyclic straining, giving common relations approached by all the materials studied. A major structural feature explored is the relationship between the nature of the hard segment (crystallising or not) and that of the soft segments. Crystallinity has been sometimes observed in the commercial PUs hard phase but this is usually limited to only a few percent for most hard segment structures when solidified from the melt. One particular diisocyanate, 4,4'-dibenzyl diisocyanate (DBDI) that, in the presence of suitable chain extenders ( diols or diamines), gives rise to significant degrees of crystallinity [i-iii] and this is included in the present work. Understanding the reaction pathways involved, in resolving the subtle morphological evolution at the nanometre level, and capturing mathematically the complex, large-deformation nonlinear viscoelastic mechanical behaviour are assumed to bring new important insights in the world basic research in polyurethanes and towards applied industrial research in this area.
This is a book on one of the most fascinating and controversial areas in contemporary science of carbon, chemistry, and materials science. It concisely summarizes the state of the art in topical and critical reviews written by professionals in this and related fields.
This volume describes new insights into the main aspects of rubber degradation by material's fatigue, wear and aging evolution, as well as their impact on mechanical rubber properties. It provides a thorough state-of-art explanation of the essential chemical, physical and mechanical principles as well as practices of material characterization for wear prediction, and to convey or define novel strategies and procedures of planning effective wear test programs. The initiating factors of abrasion, the development of surface abrasion on sharp and blunt tracks (so called cutting and chipping) and the influence of smear and lubricants is also summarized. The volume is of interest to research scientists in related fields from academia and industry.
The Science and Technology of Flexible Packaging: Multilayer Films from Resin and Process to End Use, Second Edition provides a comprehensive guide on plastic films in flexible packaging, covering scientific principles, materials properties, processes and end use considerations. Sections discuss the science of multilayer films in a concise and impactful way, presenting the fundamental understanding required to improve product design, material selection and processes. In addition, the book includes information on why one material is favored over another and how film or coating affects material properties. Descriptions and analysis of key properties of packaging films are provided from engineering and scientific perspectives. With essential scientific insights, best practice techniques, environmental sustainability information and key principles of structure design, this book provides information aids in material selection and processing, how to shorten development times and deliver stronger products, and ways to enable engineers and scientists to deliver superior products with reduced development time and cost.
This book summarizes the state ofthe art research presented at the Fourth International Conference on Frontiers of Polymersand Advanced Materialsheld in Cairo, Egypt in January 4-9, 1997. This conference follows the successful conferences held in Kuala Lumpur, Malaysia in 1995, in Jakarta, Indonesia in 1993 andin New Delhi, India in 1991. These conferences focussed on the most recent and important advances in a wide range of carefully chosen subject areas dealing with advanced materials, their science and technology and new business opportunities resulting from recent technological advances. As its predecessors, the conference held in Cairo was truly international with strong participation of 488 deiegales representing 37 countries from the USA and Egypt, as weil as Europe, South East Asia, Japan, South Africa and the Middle East. The conference was organized by the Egyptian Academy of Scientific Research and Technology, The Arab Society ofMaterials Science and the State University ofNew Y ork at Butfalo. The stated goals ofthe conference were: * To highlight advances and new. findings in the general area of polymers and advanced materials. - * T o foster global collaboration between the USA, Egypt and other nations in the general field of polymers and advanced materials. * To promote the development of scientific ilifrastructure in this field among the different participating countries, especially in the Middle East. * To create a basisforfuture long-term scientific exchanges between the USA and Egypt, and/or other countries.
This series presents critical reviews of the present and future trends in polymer and biopolymer science including chemistry, physical chemistry, physics and materials science. It is addressed to all scientists at universities and in industry who wish to keep abreast of advances in the topics covered. Impact Factor Ranking: Always number one in Polymer Science. More information as well as the electronic version of the whole content available at: www.springerlink.com
Handbook of Polymers, Third Edition represents an update on available data, including new values for many commercially available products, verification of existing data, and removal of older data where it is no longer useful. Polymers selected for this edition include all primary polymeric materials used by the plastics and chemical industries and specialty polymers used in the electronics, pharmaceutical, medical and aerospace fields, with extensive information also provided on biopolymers. The book includes data on all polymeric materials used by the plastics industry and branches of the chemical industry, as well as specialty polymers in the electronics, pharmaceutical, medical and space fields. The entire scope of the data is divided into sections to make data comparison and search easy, including synthesis, physical, mechanical, and rheological properties, chemical resistance, toxicity, environmental impact, and more.
3 In 1992 the annual world production of plastics reached 102 x 1()6m at a value of 3 over US$300 billion, while that of steel was 50 x1()6m ata value ofUS$l25 billion (Table 1. 1). Furthermore, from 1980 to 1990, plastics production increased by 62%, while thatofsteeldecreasedby 21%. Considering theunevenpolymerconsumption around theworld, polymerproductionwillhave toincreasebya factor often before currently recorded levels ofplastics sales in developed countries willbe universally reached. Polymers are the fastest growing structural materials. In addition, the polymer blend segment of the plastics industry increases at a rate about three times higher than thewhole. The aim of thisbook is to trace the historicalevolution of the polymer blends industry. Table 1. 1 World production of steel and plastics for 1992 Production Steel Plastics 410 102. Production volume (Mt/year) 3 Production volume (M(m )/year) 51 102 Production value (billion US$/year) 125 310 Growth from 1980to 1990 (%) -21 -1;62, . 121 Mt/year in 1996 A polymer (from the Greek poly = manyand meros = units) is a substancecomposed ofmacromoleculesbuiltby covalentlyjoiningatleast50 molecular segments, called mel'S. The word polymer was introduced in 1832 by Jons Jacob Berzelius for sub stances thatmayhaveidenticalchemicalcompositionbutdifferinmolecularweight (e. g., acetylene, benzene and styrene, having the formula CnH with n == 2,6and 8, n respectively). During the years 1859-1863, Louren o reported that condensation of ethylene glycol with ethylene dibromide resulted in a mixture of ethers, whose members, separated by distillation, were identified as HD-(C2l4D-)n-H with n == 2 to 6 (Stahl, 1981)."
This highlights ongoing research efforts on different aspects of polymer nanocomposites and explores their potentials to exhibit multi-functional properties. In this context, it addresses both fundamental and advanced concepts, while delineating the parameters and mechanisms responsible for these potentials. Aspects considered include embrittlement/toughness; wear/scratch behaviour; thermal stability and flame retardancy; barrier, electrical and thermal conductivity; and optical and magnetic properties. Further, the book was written as a coherent unit rather than a collection of chapters on different topics. As such, the results, analyses and discussions presented herein provide a guide for the development of a new class of multi-functional nanocomposites. Offering an invaluable resource for materials researchers and postgraduate students in the polymer composites field, they will also greatly benefit materials
Although plastics are extremely successful commercially, they would never reach acceptable performance standards either in properties or processing without the incorporation of additives. With the inclusion of additives, plastics can be used in a variety of areas competing directly with other materials, but there are still many challenges to overcome. Some additives are severely restricted by legislation, others interfere with each other-in short their effectiveness varies with circumstances. Plastics Additives explains these issues in an alphabetical format making them easily accessible to readers, enabling them to find specific information on a specific topic. Each additive is the subject of one or more articles, providing a suffinct account of each given topic. An international group of experts in additive and polymer science, from many world class companies and institutes, explain the recent rapid changes in additive technology. They cover novel additives (scorch inhibitors, compatibilizers, surface-modified particulates etc.), the established varieties (antioxidants, biocides, antistatic agents, nucleating agents, fillers, fibres, impact modifiers, plasticizers) and many others, the articles also consider environmental concerns, interactions between additives and legislative change. With a quick reference guide and introductory articles that provide the non-specialist and newcomer with relevant information, this reference book is essential reading for anyone concerned with plastics and additives.
Elastomer Blends and Composites: Principles, Characterization, Advances, and Applications presents the latest developments in natural rubber and synthetic rubber-based blends and nanocomposites, with a focus on current trends, future directions and state-of-the-art applications. The book introduces the fundamentals of natural rubber and synthetic rubbers, outlining synthesis, structure, properties, challenges and potential applications. This is followed by detailed coverage of compounding and formulations, manufacturing methods, and preparation of elastomer-based blends, composites, and nanocomposites. The next section of the book focuses on properties and characterization, examining elasticity, spectroscopy, barrier properties, and rheological, morphological, mechanical, thermal, and viscoelastic behavior, and more. This is a highly valuable resource for researchers and advanced students in rubber (or elastomer) science, polymer blends, composites, polymer science, and materials science and engineering, as well as engineers, technologists, and scientists working with rubber-based materials for advanced applications.
This book should be of interest to manufacturers of plastics products and fillers, plastics designers, engineers and polymer chemists.
In this book, the authors have assembled a systematic set of design parameters describing short and long term mechanical, thermal, electrical, fire and environmental performance, etc. for composites based primarily on continuous glass, aramid and carbon fibres in thermosetting and thermoplastic matrices.
Although polypropylene has been marketed since the 1950s, research and development in this area is still vigorous. The consumption of polypropylene over the years has been relatively high, mainly due to the steady improvement of its property profile. Polypropylene: Structures, Blends and Composites, in three separate volumes, reflects on the key factors which have contributed to the success of polypropylene, dealing with all aspects of structure-performance relationships relevant to thermoplastic polymers and related composites. Volume 1, Structure and Morphology, deals with polymorphism in polypropylene homo- and copolymers, where molecular and supermolecular structures are covered, and the processing-induced structure development of polypropylene, showing the interrelation between the processing-induced morphology and mechanical performance. Volume 2, Copolymers and Blends, contains comprehensive surveys of the nucleation and crystallisation behaviour of the related systems. It includes the development of morphology and its effects on rheological and mechanical properties of polypropylene-based alloys and blends and a review of polypropylene-based thermoplastic elastomers. Volume 3, Composites, gives a comprehensive overview of filled and reinforced systems with polypropylene as a matrix material, with the main emphasis on processing-structure-property-interrelationships. Chapters cover all aspects of particulate filled, chopped fibre-, fibre mat- and continuous fibre-reinforced composites. Interfacial phenomena, such as adhesion, wetting and interfacial crystallisation, are also included as important aspects of this subject.
The salient and versatile features of phenolic resins provide favorable comparisons between them and other thermosetting resins as well as thermoplastic products: thermal behavior; high strength level; long term thermal and mechanical stability; fire, smoke and low toxicity characteristics; electrical and thermal insulating capabilities; cost performance characteristics. The technical content of the book describes significant new phenolic resin chemistry, transformations and recent mechanistic pathways of resole and novolak cure. A vastly expanded treatment of selected application areas consists of wood composites, insulation/textile felts, molding compounds, paper/fabric impregnation, foundry, abrasives, friction and refractory. New applications with up-to-date developments include high performance and advanced composites, imaging/photoresist and carbon/graphite areas. Also included in detail: Standardized test methods important for ISO 9001 ff certification.
In August, 1996, the ACS Division of Polymeric Materials: Science and Engineering hosted a symposium on Interfacial Aspects of Multicomponent Polymer Materials at the Orlando, Florida, American Chemical Society meeting. Over 50 papers and posters were presented. The symposium proper was preceded by a one-day workshop, where the. basics of this relatively new field were developed. This edited book is a direct outcome of the symposium and workshop. Every object in the universe has surfaces and interfaces. A surface is defined as that part of a material in contact with either a gas or a vacuum. An interface is defined as that part of a material in contact with a condensed phase, be it liquid or solid. Surfaces of any substance are different from their interior. The appearance of surface or interfacial tension is one simple manifestation. Polymer blends and composites usually contain very finely divided phases, which are literally full of interfaces. Because interfaces are frequently weak mechanically, they pose special problems in the manufacture of strong, tough plastics, adhesives, elastomers, coatings, and fibers. This book provides a series of papers addressing this issue. Some papers delineate the nature of the interface both chemically and physically. The use of newer instrumental methods and new theories are described. Concepts of interdiffusion and entanglement are developed. Other papers describe state-of-the-art approaches to improving the interface, via graft and block copolymers, direct covalent bonding, hydrogen bonding, and more.
With conventional materials contributing greatly to environmental waste, biodegradable and natural composites have grown in interest and display low environmental impact at low cost across a wide range of applications. This book provides an overview of different biodegradable and natural composites and focuses on efforts into increasing their mechanical performance to extend their capabilities and applications. |
![]() ![]() You may like...
Debating Gun Control - How Much…
David DeGrazia, Lester H. Hunt
Hardcover
R3,976
Discovery Miles 39 760
Artificial Intelligence for Neurological…
Ajith Abraham, Sujata Dash, …
Paperback
R4,171
Discovery Miles 41 710
Data Science and Internet of Things…
Giancarlo Fortino, Antonio Liotta, …
Hardcover
R4,234
Discovery Miles 42 340
Deep Learning and Convolutional Neural…
Le Lu, Xiaosong Wang, …
Hardcover
Ties that bind - Race and the politics…
Shannon Walsh, Jon Soske
Paperback
High Efficiency Video Coding (HEVC…
Vivienne Sze, Madhukar Budagavi, …
Hardcover
R4,602
Discovery Miles 46 020
Sample Preparation Handbook for…
Jeanne Ayache, Luc Beaunier, …
Hardcover
R3,030
Discovery Miles 30 300
|