![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Plastics & polymers technology
Recent Advances in Smart Self-Healing Polymers and Composites examines the advances made in smart materials over the last few decades and their significant applications in aerospace, automotive, civil, mechanical, medical, and communication engineering fields. Based on a thorough review of the literature, the book identifies "smart self-healing polymers and composites" as one of the most popular, challenging, and promising areas of research. Readers will find valuable information compiled by a large pool of researchers who not only studied the latest datasets, but also reached out to leading contributors for insights and forward-thinking analogies.
Written by an expert with over 25 years experience in packaging, this book is a comprehensive guide to the use of plastic films in flexible packaging, covering scientific principles, properties, processes and end use considerations. The book brings the science of multilayer films to the practitioner in a concise and impactful way, providing the fundamental understanding required to improve product design, material selection and processes. This includes information on why one material is favoured over another for a particular application, or how the film or coating affects material properties. Detailed descriptions and analysis of the key properties of packaging films are provided from both an engineering and scientific perspective. End-use effects are also covered in detail, providing key insight into the way that the products being packaged influence film properties and design. The book bridges the gap between key scientific literature and
the practical challenges faced by the flexible packaging industry,
providing essential scientific insight, best practice techniques,
environmental sustainability information and key principles of
structure design to enable engineers and scientists to deliver
superior products with reduced development time and cost. A comprehensive reference book, providing essential information on all aspects of multilayer films in flexible packaging. Aids in material selection and processing, shortening development times and delivering stronger products. Bridges the gap between scientific principles and key challenges in the packaging industry, with practical explanations to assist practitioners in overcoming those challenges"
The result of decades of research by a pioneer in the field, this is the first book to deal exclusively with achieving high-performance metal-polymer composites by chemical bonding. Covering both the academic and practical aspects, the author focuses on the chemistry of interfaces between metals and polymers with a particular emphasis on the chemical bonding between the different materials. He elucidates the various approaches to obtaining a stable interface, including, but not limited to, thermodynamically driven redox reactions, bond protection to prevent hydrolysis, the introduction of barrier layers, and stabilization by spacer molecules. Throughout, chemical bonding is promoted as a simple and economically viable alternative to adhesion based on reversible interaction. Consequently, the text equips readers with the practical tools necessary for designing high-strength metal-polymer composites with such desired properties as resilience, flexibility, rigidity or degradation resistance.
This book summarises the development of experimental techniques for determining the impact mechanical properties of fibre reinforced epoxy laminates, and the experimental results obtained for the tensile, compressive and interlaminar shear properties of various epoxy laminates.
This book emphasizes the relationship between the microscopic structure of gels and their macroscopic behaviour. Deals with organic polymeric gels, focusing on experimental methods which have only recently been introduced to study both reversible and irreversible gels. It introduce the reader with to theory and practice of physics as applied to the study of characteristics of polymeric gels and offers several clearly described basic approaches to experimental investigations into gel properties. An outstanding resource on experimental advances and modern interpretations of polymeric gel properties written by prominent experts in the field.
The third volume of the Handbook of Polyhydroxyalkanoates (PHA) focusses on the production of functionalized PHA bio-polyesters, the post-synthetic modification of PHA, processing and additive manufacturing of PHA, development and properties of PHA-based (bio)composites and blends, the market potential of PHA and follow-up materials, different bulk- and niche applications of PHA, and the fate and use of spent PHA items. Divided into fourteen chapters, it describes functionalized PHA and PHA modification, processing and their application including degradation of spent PHA-based products and fate of these bio-polyesters during compositing and other disposal strategies. Aimed at graduate students and professionals in Polymer science, chemical engineering and bioprocessing, it: Covers current state of the art in the development of chemically modifiable PHA including mult-istep modifications of isolated biopolyesters, short syntheses of monomer feedstocks and so forth. Describes design of functionalized PHA-based polymeric materials by chemical modification . Illustrates preparation of bioactive oligomers derived from microbial PHA and synthetic analogues of natural PHA oligomers. Discusses processing and thermomechanical properties of PHA. Reviews advantages of PHA against other bio-based and conventional polymers with current applications and potential uses of PHA-based polymers highlighting innovative products.
Polymer Coatings: Technologies and Applications provides a comprehensive account of the recent developments in polymer coatings encompassing novel methods, techniques, and a broad spectrum of applications. The chapters explore the key aspects of polymer coatings while highlighting fundamental research, different types of polymer coatings, and technology advances. This book also integrates the various aspects of these materials from synthesis to application. Current status, trends, future directions, and opportunities are also discussed. FEATURES Examines the basics to the most recent advances in all areas of polymer coatings Serves as a one-stop reference Discusses polymer-coated nanocrystals and coatings based on nanocomposites Describes morphology, spectroscopic analysis, adhesion, and rheology of polymer coatings Explores conducting, stimuli-responsive, self-healing, hydrophobic and hydrophilic, antifouling, and antibacterial polymer coatings Covers modeling and simulation With contributions from the top international researchers from industry, academia, government, and private research institutions, both new and experienced readers will benefit from this applications-oriented book. Sanjay Mavinkere Rangappa is a research scientist at the Natural Composites Research Group Lab, Academic Enhancement Department, King Mongkut's University of Technology North Bangkok, Thailand. Jyotishkumar Parameswaranpillai is a research professor at the Center of Innovation in Design and Engineering for Manufacturing, King Mongkut's University of Technology North Bangkok, Thailand. Suchart Siengchin is a professor at and president of King Mongkut's University of Technology North Bangkok, Thailand.
As the title suggests, this unique book describes the synthesis, structure and properties of the polyamide family known by the common term n-nylon. Each nylon from n=1 to n=22 is discussed in detail with descriptions of the preparation of monomers, various synthetic approaches to the polymerization, structure and crystallisation of polymers and both their fundamental properties and important technological properties. It treats the structure and properties from two perspectives, namely the effect of the aliphatic chain length between amide groups and the effects of the rigidity or flexibility of the main chain Whilst intended as a reference work for all polymer scientists, in academia and industry, working with nylons, polyamide and condensation polymers, n-Nylons will also be appreciated by post-graduate students of polymer science and engineering. Each self-contained chapter can be read individually and is extensively referenced.
The first volume of the "Handbook of Polyhydroxyalkanoates (PHA): Microbial Biosynthesis and Feedstocks" focusses on feedstock aspects, enzymology, metabolism and genetic engineering of PHA biosynthesis. It addresses better understanding the mechanisms of PHA biosynthesis in scientific terms and profiting from this understanding in order to enhance PHA biosynthesis in bio-technological terms and in terms of PHA microstructure. It further discusses making PHA competitive for outperforming established petrol-based plastics on industrial scale and obstacles for market penetration of PHA. Aimed at professionals and graduate students in Polymer (plastic) industry, wastewater treatment plants, food industry, biodiesel industry, this book Covers the intracellular on-goings in PHA-accumulating bacteria Assesses diverse feedstocks to be used as carbon source for PHA production including current knowledge on PHA biosynthesis starting from inexpensive waste feedstocks Summarizes recent relevant results dealing with PHA production from various organic by-products Presents the key elements to understand and fine-tune the microstructure and sequence-controlled molecular architecture of PHA co-polyesters Discusses the use of CO-rich syngas, sourced from various organic waste materials, for PHA biosynthesis
Increasing attention is being given to the use of concrete-polymer composites as high performance and multi-functional materials in the construction industry, as well as in mechanical, electrical and chemical engineering. Particular interest is being given to these materials in Japan and other East Asian countries. This book forms the proceedings of the Second East Asia Symposium on Polymers in Concrete (II-EASPIC) held under the auspices of the Japan Charter of ICPIC (the International Congress on Polymers in Concrete). Papers are presented by international experts from thirteen different countries. Many aspects of the subject are discussed, including: new developments in the theory and practice of polymer composites; studies of their performance; appropriate manufacturing techniques and materials selection processes; their structural design; various types of concrete using polymers; methods of restoration and conservation using composites; overlays; adhesives and coating used in concrete works, special innovative developments and techniques for recycling.
This practical book sets the standard as a valuable, time-saving resource offering systematic fundamental information about industrial radiation technologies. This new edition explores updates to emerging applications of ultraviolet (UV) and electron beam (EB) radiation to polymer processing and offers updates throughout to detail changes changes, new trends, and general issues in radiation technology. It presents vital, cutting-edge information to aid further reduction of volatile organic compounds and toxic substances in the environment, develop alternative sources of energy, and harness energy in both medical and industrial applications. New features of this edition include: Stresses the practical aspects of UV/EB technology and its industrial application Includes updates on UV radiation processes and applications of UV radiation Explores new engineering data of selected commercial products Written by an expert with over forty years of experience, this book would make an excellent resource for scientists and engineers in the fields of materials science and polymer chemistry.
The modern tire is the most complex, composite product in mass production. Yet given its complexity and required performance, there is little information in the public domain regarding its development. This book provides an introduction to tire design, construction, and manufacturing in the context of materials technologies used today, along with future trends and disrupting technologies. Focuses on design and construction Discusses the relationship between materials and performance Reviews tire uniformity as a key differentiator among manufacturers Evaluates design and construction features versus performance Written for engineers in the polymer, industrial, chemical, mechanical, and automotive industries, this book offers a comprehensive view of tire design, including materials selection, construction, manufacturing, quality control, and future trends.
This practical guide for managers and engineers in the plastics industry shows how to reduce high noise levels which often occur in the workplace and reduce the risk of noise-induced hearing damage to employees. Practical methods for reducing noise from industrial machinery are described and illustrated with about twenty-five case studies relating to plastics processing machines such as granulators, shredders, extruders and injection moulders. Noise-control techniques include standard noise-control measures: enclosures, silencers and the use of sound insulating, sound-absorbing materials, vibration isolation and damping; and now the use of active noise control methods. Along with fresh case studies this new edition adds chapters on environmental noise, on European Union machinery noise emission regulations, hearing protection, prediction of noise levels, and the design of quieter workplaces.
The Role of Surface Modification on Bacterial Adhesion of Bio-implant Materials: Machining, Characterization, and Applications, explores the relationship between the surface roughness of artificial implants used for hard tissue replacement and their bacterial adhesion. It summarizes the reason for the failure of implants, the mechanisms of bacterial formation on implant surfaces, and the fundamental and established methods of implant surface modification techniques. It provides readers with an organized and rational representation about implant manufacturing and mechanical surface modification. It also explores the use of developed unidirectional abrasive flow finishing processes to finish biomaterials at the nano-level. It is an invaluable guide for academics, graduate students, biomaterial scientists, and manufacturing engineers researching implants, related infections, and implant manufacturing. Key Features: Explores implant related infections Discusses surface modification techniques Contains information on the mechanical finishing processes and complete guide on developed cutting edge unidirectional abrasive flow finishing technology
From Reports in Volume 5: "Recently polymer blends have emerged as one of the most important areas of research activity in the field of polymer science and technology. Because of their satisfactory performance in meeting specific needs of the polymer industry, they have drawn considerable attention in replacing not only many conventional materials, but also some of the polymers that are in vogue. By suitably varying the blend compositions and manipulating the processing conditions, tailor-made products with a unique set of end use properties can be achieved at a much lower cost and within a shorter time than would have been necessary for the development of a new polymer. The usefulness of such blends increases with the increasing range of applications of this type of materials." (Chapter 4) "New and growing demands on polymeric materials cannot be satisfied in future by an assortment extension of basic polymers. Although the introduction of new major-use basic polymer is possible, it seems unlikely in view of current projected economic and technical considerations. On the other hand, new products based on the modification of existing polymers have and will continue to be fruitful areas for both scientific and commercial developments. The driving forces for these developments are: 1. Improved performance, 2. Reduced cost, 3. Present, pending and future legislation dealing with health and environmental issues." (Chapter 11)
This book provides a comprehensive account of developments in the area of lightweight polymer composites. It encompasses design and manufacturing methods for the lightweight polymer structures, various techniques, and a broad spectrum of applications. The book highlights fundamental research in lightweight polymer structures and integrates various aspects from synthesis to applications of these materials. Features Serves as a one stop reference with contributions from leading researchers from industry, academy, government, and private research institutions across the globe Explores all important aspects of lightweight polymer composite structures Offers an update of concepts, advancements, challenges, and application of lightweight structures Current status, trends, future directions, and opportunities are discussed, making it friendly for both new and experienced researchers.
Advances in Women's Intimate Apparel Technology discusses the design and manufacture of intimate apparel and how the industry is increasingly embracing novel materials, new technologies, and innovations in sizing and fit. The book reviews the ways in which new materials and methods are improving the range, function, and quality of intimate apparel, with particular focus on brassiere design. Part One introduces the advanced materials used for intimate apparel, including novel fabrics and dyes and finishes, along with materials for wiring and embellishments. Part Two discusses the role of seamless technology in intimate apparel production, covering lamination, moulding, and seamless knitting. Finally, Part Three reviews advances in design, fit, and performance.
Industrial Applications of Renewable Plastics: Environmental, Technological, and Economic Advances provides practical information to help engineers and materials scientists deploy renewable plastics in the plastics market. It explores the uses, possibilities, and problems of renewable plastics and composites to assist in material selection and rejection. The designer's main problems are examined, along with basic reminders that deal with structures and processing methods that can help those who are generally familiar with metals understand the unique properties of plastic materials. The book offers a candid overview of main issues, including conservation of fossil resources, geopolitical considerations, greenhouse effects, competition with food crops, deforestation, pollution, and disposal of renewable plastics. In addition, an overview of some tools related to sustainability (Life cycle assessments, CO2 emissions, carbon footprint, and more) is provided. The book is an essential resource for engineers and materials scientists involved in material selection, design, manufacturing, molding, fabrication, and other links in the supply chain of plastics. The material contained is of great relevance to many major industries, including automotive and transport, packaging, aeronautics, shipbuilding, industrial and military equipment, electrical and electronics, energy, and more.
Electrical Properties of Polymers describes the electric phenomena responsible for determining the chemical and supramolecular structure of polymers and polymeric materials. The authors explore the properties of quasi-static dipoles, reviewing Brownian motion, Debye theory, Langevin and Smoluchowski equations, and the Onsager model. This reference displays Maxwell and entropy equations, along with several others, that depict the thermodynamics of dielectric relaxation. Featuring end-of-chapter problems and useful appendices, the book reviews molecular dynamics simulations of dynamic dielectric properties and inspects mean-square dipole moments of gases, liquids, polymers, and fixed conformations.
Polymer Processing Instabilities: Control and Understanding offers a practical understanding of the various flows that occur during the processing of polymer melts. The book pays particular attention to flow instabilities that affect the rate of production and the methods used to prevent and eliminate flow instabilities in order to increase production rates and enhance manufacturing efficiency. Polymer Processing Instabilities: Control and Understanding summarizes experimental observations of flow instabilities that occur in numerous processing operations such as extrusion, injection molding, fiber spinning, film casting, and film blowing for a wide range of materials, including most commodity polymers that are processed as melts at temperatures above their melting point or as concentrated solutions at lower temperatures. The book first presents the fundamental principles in rheology and flow instabilities. It relates the operating conditions with flow curves, the critical wall shear stress for the onset of the instabilities, and new visualization techniques with numerical modeling and molecular structure. It reviews one-dimensional phenomenological relaxation/oscillation models describing the experimental pressure and flow rate oscillations, analyzes the gross melt fracture (GMF) instability, and examines how traditional and non-traditional processing aids eliminate melt fracture and improve polymer processability. It supplies a numerical approach for the investigation of the linear viscoelastic stability behavior of simplified injection molding flows and examines a newly discovered family of instabilities that occur in co-extrusion. Polymer Processing Instabilities: Control and Understanding is unique in that it fills a gap in the polymer processing literature where polymer flow instabilities are not treated in-depth in any book. It summarizes state-of-the-art developments in the field, particularly those of the last ten years, and contains significant data based on this research.
This revised and expanded single-source reference analyzes all compounding material classes of dry rubber compounds, such as carbon blacks, platicizers and age resisters, integrating detailed information on how elastomers are built up. The work provides practical compounding tips on how to avoid oil or antioxidant bloom, how to adjust electrical conductivity and how to meet volume swell requirements.;This second edition: provides material on government regulations regarding rubber waste; presents current insights into the fast-growing polymer technology of thermoplastic elastomers; discusses the ramifications of the commercial availability of epoxidized natural rubber; and offers a comprehensive tabular chart on the properties of polymers.
New synthetic techniques allow chemists to modify polymer microstructures more precisely than ever, making it possible to design materials that meet increasingly demanding performance requirements. Written and edited by experts in the field, Stereoselective Polymerization with Single-Site Catalysts reviews how the relative stereochemistry of polymer chains affects polymer properties and presents the latest strategies for developing tactic polymers using single-site catalysis. This unified volume explains the mechanistic basics of tactic polymerizations, beginning with an extensive survey of the most important classes of metallocene and post-metallocene catalysts used to make polypropylenes. It also focuses on tactic stereoblock and ethylene/propylene copolymers and catalyst active site models, followed by chapters discussing the structure of more stereochemically complex polymers and polymerizations that proceed via non-vinyl-addition mechanisms. Individual chapters thoroughly describe tactic polymerizations of -olefins, styrene, dienes, acetylenes, lactides, epoxides, acrylates, and cyclic monomers, as well as cyclopolymerizations and ditactic structures, olefin/CO polymers, and metathesis polyalkenamers. An ideal reference and supplementary text, Stereoselective Polymerization with Single-Site Catalysts enables both new and experienced chemists to better understand tactic polymers and select appropriate catalyst systems for their preparation.
An in-depth review of important preparative methods for the synthesis and chemical modification of polymers, this authoritative second edition examines the advantages and limitations of various polymerization applications and procedures. It features new approaches and innovative strategies from the most prominent industry and academic laboratories, reflecting the burgeoning role of polymers in modern science and technology. The book analyzes biodegradable polymers for biomedical applications; investigates the use of polyolefins, polymeric dienes, aromatic polyethers, polymides, and metal-containing macromolecules; and covers polymers of acrylic acid, methacrylic acid, and maleic acid.
This book is divided into 5 sections starting with an historic
perspective and fundamental aspects on the synthesis and
recognition by imprinted polymers. The second section contains 8
up-to-date overview chapters on current approaches to molecular and
ion imprinting. This is followed by two chapters on new material
morphologies and in the last two sections various analytical
applications of imprinted polymers are given, with the last four
chapters devoted to the promising field of imprinted polymers in
chemical sensors.
Application as well as detection of different chemicals plays an important role in the progress of modern science and technology. The beauty of various characteristics of materials and the inherent logic behind their working mechanisms can be wisely utilized for sensing different chemicals. The mechanisms as well as performances of different materials viz. carbon nanotube, graphene, metal oxides, biomaterials, luminescent metal-organic frameworks, hydrogels, textiles, quantum dots, ligands, crown ethers etc. for identification of different chemicals has been discussed here. This book would be a valuable reference to select suitable materials for possible use in chemical sensors. |
![]() ![]() You may like...
Last Minute Pumpkin Stencil Pages - 70…
Tristarpumpkin Stencilcraft, Pump Sten
Paperback
R345
Discovery Miles 3 450
|