![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Plastics & polymers technology
This volume explores the latest developments in the area of polymer electrolyte membranes (PEMs) used for high-temperature fuel cells. Featuring contributions from an international array of researchers, it presents a unified viewpoint on the operating principles of fuel cells, various methodologies used for the fabrication of PEMs, and issues related to the chemical and mechanical stabilities of the membranes. Special attention is given to the fabrication of electrospun nanocomposite membranes. The editors have consciously placed an emphasis on developments in the area of fast-growing and promising PEM materials obtained via hygroscopic inorganic fillers, solid proton conductors, heterocyclic solvents, ionic liquids, anhydrous H3PO4 blends, and heteropolyacids. This book is intended for fuel cell researchers and students who are interested in a deeper understanding of the organic-inorganic membranes used in fuel cells, membrane fabrication methodologies, properties and clean energy applications.
A huge variety of biopolymers - such as polysaccharides, polyesters, and polyamides - are naturally produced by microorganisms. These range from viscous solutions to plastics. Their physical properties are dependent on the composition and molecular weight of the polymer. The genetic manipulation of microorganisms opens up an enormous potential for the biotechnological production of biopolymers with tailored properties suitable for high-value medical application such as tissue engineering and drug delivery. Written by expert, internationally renowned scientists, this comprehensive volume describes in detail the use of microorganisms for the production of the most important biopolymers and polymer precursors. The contributors describe in depth the biosynthetic pathways, physical properties, and industrial production processes; and they discuss in detail the genetic and metabolic engineering of microorganisms for biopolymer production. Also highlighted are the applications and potential applications of the biopolymers and microbial biotechnology. Topics include the biochemistry and genetics of biosynthesis of xanthan, alginate, cellulose, cyanophycin, poly(gamma-glutamic acid), levan, hyaluronic acid, organic acids, oligosaccharides and polysaccharides, and polyhydroxyalkanoates. This book is recommended book for all biotechnology and microbiology laboratories.
Fluid Effects in Polymers and Polymeric Composites, written by the late Dr. Y. Jack Weitsman, addresses the wide range of parameters that affect the interaction of fluids with polymers and polymeric composites. The book aims at broadening the scope of available data, mostly limited up to this time to weight-gain recordings of fluid ingress into polymers and composites, to the practical circumstances of fluctuating exposure. Various forms of experimental data are given, in conjunction with theoretical models derived from basic scientific principles, and correlated with severity of exposure conditions and interpreted by means of rationally based theoretical models. The practical implications of the effects of fluids are discussed. The issue of fluid effects on polymers and polymeric composites is of concern to engineers and scientists active in aerospace and naval structures, as an increasing portion of these structures are made of polymeric composites and employ polymeric adhesives as a joining device. While the book is intended for this audience, it will also interest researchers and graduate students interested in the mechanics and materials aspects of this matter.
Proceedings of The 7th World Conference on Biodegradable Polymers
& Plastics organized by the European Degradable Polymer Society
in conjunction with the Bioenvironmental Polymer Society and the
Biodegradale Plastics Society, under the auspices of ICS-UNIDO
(Italy) and INSTM Consortium (Italy) and under the patronage of
IUPAC - International Union of Pure and Applied Chemistry (USA) and
Ministero dell'Ambiente e della Tutela del Territorio (Italy), held
in Tirrenia (Pisa), Italy, on June 4-8, 2002. -Environmentally Degradable Polymeric Materials (EDPs);
The 75th Anniversary Celebration of the "Division of Polymeric Materials: Science and Engineering" of the "American Chemical Society," in 1999 sparked this third edition of "Applied Polymer Science" with emphasis on the developments of the last few years and a serious look at the challenges and expectations of the 21st Century.
Fullerene Polymers and Fullerene Polymer Composites is an in-depth experimental and theoretical account of polymers and composites whose unusual properties, such as, photophysical phenomena, electrical transport, phase transitions and magnetic properties, stem from the incorporation of C60 in the material. Each chapter is written by an internationally renowned expert who has published extensively in this sub-field of fullerene materials. Introductory chapters on the fundamental properties of fullerenes (C60, C70) and photophysical phenomena in fullerenes and polymers are also included.
This series presents critical reviews of the present and future trends in polymer and biopolymer science including chemistry, physical chemistry, physics and materials science. It is addressed to all scientists at universities and in industry who wish to keep abreast of advances in the topics covered. Impact Factor Ranking: Always number one in Polymer Science.
This book examines current issues of fiber reinforced polymer (FRP) composites in civil infrastructure. The contents of this book are divided into two parts. The first part engages topics related to durability and service life of FRP composites and how they contribute to sustainability. The second part highlights implementation and applications of the FRP composites with an emphasis on bridge structures. An introductory chapter provides an overview of FRP composites and its role in a sustainable built environment highlighting the issues of durability and service life followed by a current review of sustainability in infrastructure design. "
This doctoral thesis explains the synthesis and characterization of novel, smart hybrid nanomaterials. Bastian Ebeling combines in this work synthetic polymers with inorganic nanoparticles from silica or gold. The first chapters offer a comprehensive introduction to basics of polymer science and the applied methodologies. In following chapters, the author describes in detail how he systematically tailored the polymers using reversible addition-fragmentation chain transfer polymerization (RAFT) for combination with inorganic nanoparticles. This work also unravels mechanistic, thermodynamic, and structural aspects of all building blocks and reaction steps. The method described here is simple to perform and opens up pathways to new sets of nanohybrid materials with potential applications as sensors, in energy conversion, or catalysis. Readers will find a unique picture of the step-by step formation of new complex nanomaterials. It offers polymer scientists a systematic guide to the formation and synthesis of a new class of responsive nanomaterials.
Second in the Metallocene series from PDL, this book focuses on the commercial use and process improvements of resins produced with metallocene, single site, and other modern catalytic methods. Research to broaden the scope of applications and shorten production cycles is presented. New and improved polymer blends resulting from the use of new catalysts and improved polymer compatibility are explored as well as new applications becoming possible due to improved and balanced properties. Current trends and the latest research from the international scientific and industrial community are presented in this volume. Chapters cover use in extrusion, film manufacture, injection molding, foam production, fiber spinning, composites and new applications. Precise testing methods, material characterization, polymer morphology and crystallization are the focus of another section of the book.
The broad collection of techniques gathered in this book help illustrate material/process/property relationships for a wide selection of materials and processes in the plastics industry. With the recent increases in computing power and scope, as well as advances in software engineering, imaging has already become a universal tool. Image processing and image analysis have become common expressions are widely recognized within the scientific community. The imaging techniques employed range from visible optical methods to scanning and transmission electron microscopy, x-ray, thermal wave infrared and atomic force microscopy. Image analysis is used to monitor/ characterize a variety of processes. Processes included within this book are: extrusion, injection molding, foam production, film manufacture, compression molding, blow molding, vulcanization, melt spinning, reactive blending, welding, conveying, composite manufacture, compounding, and thermosetting. Imaging techniques are also employed to characterize/quantify a number of important material properties. These include: fiber orientation distribution, homogeneity of mixing, the rate of spherulites growth, polymer crystallization rate, melt flow index, pore size and shape in foam, cell density in foam, void content, particle analysis in polymer blends, morphology, interparticle distance, fiber diameter, fatigue crack, crazing, scratching, surface roughness, fiber-length distribution, nucleation, oil penetration, peel adhesion, chemical resistance, droplet-fiber transition, electrical conductivity, dispersion and impurity content.
Cyclic Polymers (Second Edition) reviews the many recent advances in this rapidly expanding subject since the publication of the first edition in 1986. The preparation, characterisation, properties and applications of a wide range of organic and inorganic cyclic oligomers and polymers are described in detail, together with many examples of catenanes and rotaxanes. The importance of large cyclics in biological chemistry and molecular biology is emphasised by a wide coverage of circular DNA, cyclic peptides and cyclic oligosaccharides and polysaccharides. Experimental techniques and theoretical aspects of cyclic polymers are included, as well as examples of their uses such as ring opening polymerisation reactions to give commercially important materials. This book covers a wide range of topics which should be of interest to many scientific research workers (for example, in polymer science, chemistry and molecular biology), as well as providing a reference text for undergraduate and graduate students.
Volume A of Handbook of Polymer Nanocomposites deals with Layered Silicates. In some 20 chapters the preparation, architecture, characterisation, properties and application of polymer nanocomposites are discussed by experts in their respective fields
Emulsion polymerization is a technologically and commercially important reaction used to produce synthetic polymers and latexes for a wide range of applications. It is the basis of a massive global industry that is expanding due to the versatility of the reaction and the greater realization of the ability to control properties of the polymer latexes produced. Emulsion Polymerization and Emulsion Polymers provides an up-to-date treatment of both academic and industrial aspects of the subject in a single self-contained volume. Established knowledge is integrated with latest developments and introductory chapters to give a state-of-the-art summary which is also suitable as a broad based introduction to the field. The individual chapters have been written by specialists from academia and industry and are presented in a way which ensures that the book will be of equal value to experienced researchers and students.
It has been estimated that within just ten years, over half of all polyolefins will be made by using metallocene catalysts. This ground-breaking volume from PDL brings together- for the first time- work from dozens of world-renowned experts on the subject. Fifty chapters of peer-reviewed content offer insights into applications in automotive components, food packaging, insulating films, non-woven fabrics and medical markets, among others.
Reinforced plastics composites are increasingly in demand for the
huge range of long-term applications - not surprisingly, as they
are amongst the best materials in the world for durability. This
exceptionally user-friendly guide has been written for engineers,
designers and managers who are considering using reinforced
plastics in applications
A collection of infrared and Raman spectra of 500 natural and synthetic polymers of industrial importance is presented in this book. A large variety of compounds are included, starting with linear polyolefins and finishing with complex biopolymers and related compounds. The spectra were registered using Infrared Fourier Transform Spectrometers in the laboratory of the All-Russia Institute of Forensic Sciences. The IR and Raman spectra are presented together on the same sheet. The accompanying data include general and structure formulae, CAS register numbers, and sample preparation conditions. Features of this book: Continues the long tradition of publishing specific and standard data of new chemical compounds. For low-molecular weight substances, complementary IR and Raman spectra are featured on the same sample and printed on the same page. This "fingerprint" data allows the substance of the sample to be identified without doubt. An important feature of this unique collection of data is the increase in the identification precision of unknown substances. Peak tables are available in digital (ASCII) format, on a diskette delivered with the book. This allows the user to search for unknowns. All the spectra in the collection are base-line corrected. This book will be of interest to scientists involved in the synthesis of new polymeric materials, polymer identification, and quality control. Libraries of scientific institutes, research centers, and universities involved in vibrational spectroscopy will also find this collection invaluable."
The series Advances in Polymer Science presents critical reviews of the present and future trends in polymer and biopolymer science. It covers all areas of research in polymer and biopolymer science including chemistry, physical chemistry, physics, material science. The thematic volumes are addressed to scientists, whether at universities or in industry, who wish to keep abreast of the important advances in the covered topics. Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist. Review articles for the individual volumes are invited by the volume editors. Single contributions can be specially commissioned. Readership: Polymer scientists, or scientists in related fields interested in polymer and biopolymer science, at universities or in industry, graduate students
A Brief History of Polymeric Cryogels Vladmir I. Lozinsky Basic Principles of Cryotropic Gelation Vladimir I. Lozinsky, Oguz Okay Synthesis, Structure-Property Relationships of Cryogels Oguz Okay, Vladimir I. Lozinsky Kinetic Analysis of Cryotropic Gelation of Poly(vinyl alcohol)/water Solutions by Small-Angle Neutron Scattering Claudio De Rosa, Finizia Auriemma, Rocco Di Girolamo Cryogels via UV Irradiation Technique Petar D. Petrov, Christo B. Tsvetanov Inorganic Cryogels Oleg A. Shlyakhtin Cryogels for Biotechnological Applications Bo Mattiasson Poly(vinyl alcohol) Cryogels for Biomedical Applications Wankei Wan, A. Dawn Bannerman, Lifang Yang, Helium Mak.
Salen Metal Complexes as Catalysts for the Synthesis of Polycarbonates from Cyclic Ethers and Carbon Dioxide, by Donald J. Darensbourg.- Material Properties of Poly(Propylene Carbonates), by Gerrit. A. Luinstra and Endres Borchardt.- Poly(3-Hydroxybutyrate) from Carbon Monoxide, by Robert Reichardt and Bernhard Rieger. - Ecoflex(r) and Ecovio(r): Biodegradable, Performance-Enabling Plastics, by K. O. Siegenthaler, A. Kunkel, G. Skupin and M. Yamamoto.- Biodegradability of Poly(Vinyl Acetate) and Related Polymers, by Manfred Amann and Oliver Minge.- Recent Developments in Ring-Opening Polymerization of Lactones, by P. Lecomte and C. Jerome.- Recent Developments in Metal-Catalyzed Ring-Opening Polymerization of Lactides and Glycolides: Preparation of Polylactides, Polyglycolide, and Poly(lactide-co-glycolide), by Saikat Dutta, Wen-Chou Hung, Bor-Hunn Huang and Chu-Chieh Lin.- Bionolle (Polybutylenesuccinate), by Yasushi Ichikawa, Tatsuya Mizukoshi.- Polyurethanes from Renewable Resources, by David A. Babb.-"
Surfaces and interfaces of polymers play an important role in most of the application areas of polymers, e.g. moulds, foils, thin films, coatings, adhesive joints, blends, composites, biomaterials or applications in micro- and nanotechnology. Therefore it is very important to be able to characterize these surfaces and interfaces in detail. In Polymer Surfaces and Interfaces, experts provide concise explanations, with examples and illustrations, of the key techniques. In each case, after basic principles have been reviewed, applications of the experimental techniques are discussed and illustrated with specific examples. Scientists and engineers in research and development will benefit from an application-oriented book that helps them to find solutions to both fundamental and applied problems.
Sensors and Actuators using polymeric systems is one of the most promising fields of "Intelligent Polymers", which is becoming more and more important associating with artificial sensing and actuating systems in living organisms. Some practical applications have now started to test in industry. The book covers optical, gas, taste, and other sensing systems using various kinds of polymers. Soft and wet actuating systems using polymer gels and networks are another field which caused excitation in the last year. The contributors are all pioneers in the field, and were selected from world-wide level. They provide the necessary background information and science to develop a basic understanding of the field, its supporting technologies and current applications. Besides, the overviews will provide a sense of how these supporting technologies can be combined to meet the requirements of advanced systems. Finally, the readers will learn about potential future developments.
This book is aimed at scientists and practicing engineers who are currently exploring or would like to explore the complexity of fabrication processes of polymer composites. It deals with the mechanics and modeling aspects of discontinuous and continuous fiber composites and familarizes the engineer with the critical and fundamental issues of material processing and transport phenomena in polymeric composites and their applications in modeling and simulating specific composite manufacturing processes. Divided into three parts, Part A deals with the deformation science or rheology of these filled materials. It clearly shows the need to characterize their flow behavior before one can draw any conclusions about its processibility during manufacturing. Part B focuses on development of constitutive equations to describe the flow and deformation behavior of such materials under external processing conditions. Part C discusses the mathematical models for selected composite processes and their implementation into a computer simulation to analyze the process behavior. The processes represented in Part C cover a cross-section of important manufacturing processes and maintain a balance between processes that use short fibers and continuous fibrous materials.
Polypeptide-Polymer Conjugates, by Henning Menzel Chemical Strategies for the Synthesis of Protein-Polymer Conjugates, by Bjorn Jung and Patrick Theato Glycopolymer Conjugates, by Ahmed M. Eissa and Neil R. Cameron DNA-Polymer Conjugates: From Synthesis, Through Complex Formation and Self-assembly to Applications, by Dawid Kedracki, Ilyes Safir, Nidhi Gour, Kien Xuan Ngo and Corinne Vebert-Nardin Synthesis of Terpene-Based Polymers, by Junpeng Zhao and Helmut Schlaad
NMR has made important contributions to our understanding of structure& #150; property relationships in polymers. This book provides an up-to-date and comprehensive overview of the fundamentals of NMR, with applications of multidimensional NMR and the new solution and solid-state methods in polymer science. < B> NMR of Polymers< /B> is written by leading authorities for graduate students and professionals in academia and industry.< br> < br> Key Features< br> * Provides comprehensive overview of NMR in Polymer Science< br> * Covers multidimensional NMR< br> * Includes new solution and solid state methods< br> * Addresses chain conformation and dynamics |
![]() ![]() You may like...
Revolutionary Applications of…
Surjit Singh, Anca Delia Jurcut
Hardcover
R6,720
Discovery Miles 67 200
Intermittent Fasting for Women - Lose…
Kate Sinclair, Mark Evans
Hardcover
|