![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Plastics & polymers technology
How easy life would be if only moldings were the same size and shape as the mold. But they never are, as molders, toolmakers, designers and end users know only too well. Shrinkage means that the size is always different; warpage often changes the shape too. The effects are worse for some plastics than others. Why is that? What can you do about it? The Handbook of Molded Part Shrinkage and Warpage is the first and only book to deal specifically with this fundamental problem. Jerry Fischer s Handbook explains in plain terms why moldings shrink and warp, shows how additives and reinforcements change the picture, sets out the effect of molding process conditions, and explains why you never can have a single correct shrinkage value. It goes on to demonstrate how to alleviate the problem through careful design of the molded part and the mold, and by proper material selection. It also examines computer-aided methods of forecasting shrinkage and warpage. And most important of all, the Handbook gives you the data you need to work with. .
The value of the groceries purchases in the USA is over $500 billion annually, most of which is accounted for by packaged foods. Plastic packaging of foods is not only ubiquitous in developed economies, but increasingly commonplace in the developing world, where plastic packaging is instrumental in decreasing the proportion of the food supply lost to spoilage. This new handbook is a combination of new material and updated chapters, chosen by Dr. Sina Ebnesajjad, from recently published books on this subject. "Plastic Films in Food Packaging "offers a practical handbook for engineers, scientists and managers working in the food packaging industry, providing a tailor-made package of science and engineering fundamentals, best practice techniques and guidance on new and emerging technologies. By covering materials, design, packaging processes, machinery and waste management together in one book, the authors enable the reader to take a lifecycle approach to food packaging. The Handbook addresses questions related to film grades, types
of packages for different types of foods, packaging technologies,
machinery and waste management. Additionally the book provides a
review of new and emerging technologies. Two chapters cover the
development of barrier films for food packaging and the regulatory
and safety aspects of food packaging. Includes key published material on plastic films in food packaging, updated specifically for this Handbook, and new material on the regulatory framework and safety aspects. Coverage of materials and applications together in one handbook enables engineers and scientists to make informed design and manufacturing decisions.
The commercial PVF film Tedlar(r) was first trademarked by DuPont 50 years ago. Since that time it has established itself as a polymer with excellent resistance to sunlight degradation (UV resistance), thermal stability, chemical attack, water absorption, and solvents. These properties, together with a high solar energy transmittance rate, have led to it becoming established worldwide as the number one choice for the backsheets of photovoltaic solar panels, and a fire-retardent coating used in aircraft. Thisbook is the first and only handbook that describes polyvinyl
fluoride preparation, technology, processing, fabrication and
applications - making it essential reading for engineers and
scientists working in industry sectors where PVF is utilized. Completeguide to theapplications of polyvinyl fluoride in photovoltaics, aerospace, signage, etc. Technology guide for processing and fabrication of PVF films. Reference for properties and characteristics of PVF films The only book available that focuses on PVF - properties, processing and applications"
Radiation processing is widely employed in plastics engineering to enhance the physical properties of polymers, such as chemical resistance, surface properties, mechanical and thermal properties, particle size reduction, melt properties, material compatibility, fire retardation, etc. Drobny introduces readers to the science of ionizing radiation and its effects on polymers, and explores the technologies available and their current and emerging applications. The resulting book is a valuable guide for a wide range of
plastics engineers employing ionizing radiation for polymer
treatment in a range of sectors including packaging, aerospace,
defense, medical devices and energy applications. Radiation
resistant polymers are also explored. Unlock the potential of ionizing radiation in applications such as electron-beam curing and laser joining. Gain an understanding of the selection and safe use of radiation treatment equipment. The only detailed guide to ionizing radiation written for the plastics engineering community."
As a consultant to the plastics industry, Ottmar Brandau s focus is on using his engineering knowhow and production management experience to improve quality and productivity, cut down cycle time and introduce secondary processes such as inline printing. This book is a thoroughly practical handbook that provides engineers and managers with the toolkit to improve production and engineering aspects in their own businesses - saving money, increasing output and improving competitiveness by adopting new technologies. In this book, Brandau covers the engineering aspects of bottle
production and the relevant production processes (focusing on blow
molding), along with plant layout and organization and production
management, to produce the definitive handbook for engineers and
managers alike.
Permeability properties are essential data for the selection of materials and design of products across a broad range of market sectors from food packaging to Automotive applications to Medical Devices. This unique handbook brings together a wealth of permeability data in a form that enables quick like-for-like comparisons between materials. The data is supported by a full explanation of its interpretation, and an introduction to the engineering aspects of permeability in polymers. The third edition includes expanded explanatory text which makes
the book accessible to novices as well as experienced engineers,
written by industry insider and author Larry McKeen (DuPont), and
20% new data and major new explanatory text sections to aid in the
interpretation and application of the data.
Fluorinated ionomer polymers form impermeable membranes that
conduct electricity, properties that have been put to use in
large-scale electrochemical applications, revolutionizing the
chlor-alkali industry and transforming production methods of some
of the world s highest-production commodity chemicals: chlorine,
sodium hydroxide and potassium hydroxide. The use of fluorinated
ionomers such as Nafion(r) have removed the need for mercury and
asbestos in these processes and led to a massive reduction in
electricity usage in these highly energy-intensive processes.
Polymers in this group have also found uses in fuel-cells,
metal-ion recovery, water electrolysis, plating, surface treatment
of metals, batteries, sensors, drug release technologies, gas
drying and humidification, and super-acid catalysis used in the
production of specialty chemicals. Walther Grot, who invented
Nafion(r) while working for DuPont, has written this book as a
practical guide to engineers and scientists working in
electrochemistry, the fuel cell industry and other areas of
application. His book is a unique guide to this important polymer
group and its applications, in membranes and other forms. The 2e
expands this handbook by over a third, with new sections covering
developments in electrolysis and membranes, additional information
about the synthesis and science of the polymer group, and an
enhanced provision of reference data. An essential reference for scientists working with electrolysis and electrochemical processes (the use of this polymer group in industrial chemistry processes is credited with a 1% reduction in global electricity usage) Covers the techniques involved in the growing range of applications for fluorinated ionomers, including fuel cells, batteries and drug delivery The only book on this important polymer group, written by Walther Grot, the inventor of the leading fluorinated ionomer, Nafion(r) from DuPont
This book will provide a comprehensive overview on the green approach to the research and industrialization of plastic materials. An effort will be made to offer to the reader a critical perspective concerning both oil-based plastics and novel bio-based and waste-derived polymer formulations. A special focus on bio-innovation in the area of organic materials will also be delivered.
Over the past few decades, there has been unprecedented progress in the design of versatile biopolymer-based nanoplatforms for pharmaceutical and biomedical applications, particularly due to their attractive traits, including excellent biocompatibility, outstanding biodegradability, low immunogenicity, and facile chemical modifiability. Biopolymer-Based Nanomaterials in Drug Delivery and Biomedical Applications serves as a clear and detailed body of information on the synthesis and characterization of biopolymer-based materials in nanomedicine. This book describes various nanomaterials consisting of biopolymers including polysaccharides (i.e., derived from plants, animals, bacteria, algae, and fungi) and polypeptides in terms of their structures, synthetic protocols, and characterization and uses as therapeutic drugs and gene delivery carriers and in other biomedical fields. The chapters of this book, which are contributed by internationally renowned scholars working in the arena of biopolymer-based nanomaterials, would offer a wide vision on the potential future applications of these nanomaterials in the delivery and targeting of bioactive molecules of pharmaceutical interests and in tissue engineering, biosensing, bioimaging, and diagnostic purposes. The state-of-the-art information presented in the book would also encourage young investigators and researchers to further bring cutting-edge developments in the field of nanomedicine in the near future.
The book focuses on the development of high performance, high efficiency electroactive polymers (EAPs), and electromechanically active polymers by controlling molecular chemical structure and morphology for all applications. This book is ideal for academicians and researchers in polymer and materials science.
Today engineers, designers, buyers and all those who have to work
with plastics face a dilemma. There has been a proliferation of
test methods by which plastic properties are measured. The property
data measured by these test methods are not identical and sometimes
have large differences. How are engineers, designers, buyers going
to decide the type and resin grade and their property data? Which
are the valid test methods? The right plastic property data are the
difference between success and failure of a design, thus making the
property selection process critical. For the first time this book
provides a simple and efficient approach to a highly complex and
time consuming task. There are over 26,000 different grades of
polymers and millions of parts and applications, further adding to
the difficulty of the selection process.
This book provides a comprehensive and updated insight into
dielectric elastomers; one of the most promising classes of
polymer-based smart materials and technologies. This technology can
be used in a very broad range of applications, from robotics and
automation to the biomedical field.
Microencapsulations may be found in a number of fields like medicine, drug delivery, biosensing, agriculture, catalysis, intelligent microstructures and in many consumer goods. This new edition of Microencapsulation revises chapters to address the newest innovations in fields and adds three new chapters on the uses of microencapsulations in medicine, agriculture, and consumer products.
In this 3rd Edition of the Reinforced Plastics Handbook the authors
have continued the approach of the late John Murphy, author of the
first and second editions.The book provides a compendium of
information on every aspect of materials, processes, designs and
construction.Fiber-reinforced plastics are a class of materials in
which the basic properties of plastics are given mechanical
reinforcement by the addition of fibrous materials. The wide choice
of plastics resin matrices and the correspondingly wide choice of
reinforcing materials mean that the permutations are virtually
unlimited. But the optimum properties of resin and reinforcement
cannot be obtained unless there is an effective bond between the
two, and this is the continuing objective of reinforced plastics
production, design and processing.
Over the past three decades, the terminology of composite materials has been well acknowledged by the technical community, and composite materials have been gaining exponential acceptance in a diversity of industries, serving as competitive candidates for traditional structural and functional materials to realize current and future trends imposed on high performance structures. Striking examples of breakthroughs based on utilization of composite materials are increasingly found nowadays in transportation vehicles (aircraft, space shuttle and automobile), civil infrastructure (buildings, bridge and highway barriers), and sporting goods (F1, golf club, sailboat) etc., owing to an improved understanding of their performance characteristics and application potentials, especially innovative, cost-effective manufacturing processes. As the equivalent of ICCM in the Asian-Australasian regions, the Asian-Australasian Association for Composite Materials (AACM) has been playing a vital leading role in the field of composites science and technology since its inception in 1997 in Australia. Following the excellent reputations and traditions of previous ACCMs, ACCM-4 is held in scenic Sydney, Australia, 6-9 July 2004. The theme of ACCM-4, Composites Technologies for 2020, provides a forum to present state-of-the-art achievements and recent advances in composites sciences & technologies, and discuss and identify key and emerging issues for future pursuits. By bringing together leading experts and promising innovators from the research institutions, end-use industries and academia, ACCM-4 intends to facilitate broadband knowledge sharing and identify opportunities for long-term cooperative research and development ventures. The scope of ACCM-4 is broad. It includes, but is not limited to, the following areas: Bi- composites, Ceramic matrix composites, Durability and aging, NDE and SHM Eco-composites, Manufacturing and processing technologies, Industrial applications, Interphases and interfaces, Impact and dynamic response Matrices (polymers, ceramics, and metals), Mechanical and physical properties (fatigue, fracture, micromechanics, viscoelastic behavior, buckling and failure, etc.), Metal matrix composites, Multi-functional composites, Nano-composites, Reinforcements (textiles, strand, and mat), Smart materials and structures, Technology transfer (education, training, etc.)
Plastics to Energy: Fuel, Chemicals, and Sustainability Implications covers important trends in the science and technology of polymer recovery, such as the thermo-chemical treatment of plastics, the impact of environmental degradation on mechanical recycling, incineration and thermal unit design, and new options in biodegradable plastics. The book also introduces product development opportunities from waste materials and discusses the main processes and pathways of the conversion of polymeric materials to energy, fuel and chemicals. A particular focus is placed on industrial case studies and academic reviews, providing a practical emphasis that enables plastics practitioners involved in end-of-life aspects to employ these processes. Final sections examine lifecycle and cost analysis of different plastic waste management processes, exploring the potential of various techniques in modelling, optimization and simulation of waste management options.
As a new and exciting field of interdisciplinary macromolecular
science and engineering, polymeric materials will have a profound
presence in 21st century chemical, pharmaceutical, biomedical,
manufacturing, infrastructure, electronic, optical and information
technologies. The origin of this field derived from an area of
polymer science and engineering encompassing plastic technologies.
The field is rapidly expanding to incorporate new interdisciplinary
research areas such as biomaterials, macromolecular biology, novel
macromolecular structures, environmental macromolecular science and
engineering, innovative and nano-fabrications of products, and is
translating discoveries into technologies.
Photoreactive thin films have been investigated extensively due to the advances in photonics, and the coupling between photochemistry and nonlinear optics has developed into a new discipline since the 1990s. Light can manipulate the orientation of optically sensitive chromophores containing polymeric thin films, and this phenomena has important applications to the field of opto-electronics and photonics especially in such areas as liquid crystals and optical storage of information.;Scientists from different communities have been working in this area representing such fields as chemistry, chemical engineering, polymer science and optics. The purpose of this books is to provide a comprehensive reference covering the basic fundamentals of the interdisciplinary research as well as the applications in photonics.
Electrical Conductivity in Polymer-Based Composites: Experiments, Modelling and Applications offers detailed information on all aspects of conductive composites. These composites offer many benefits in comparison to traditional conductive materials, and have a broad range of applications, including electronic packaging, capacitors, thermistors, fuel cell devices, dielectrics, piezoelectric functions and ferroelectric memories. Sections cover the theory of electrical conductivity and the different categories of conductive composites, describing percolation threshold, tunneling effect and other phenomena in the field. Subsequent chapters present thorough coverage of the key phases in the development and use of conductive composites, including manufacturing methods, external parameters, applications, modelling and testing methods. This is an essential source of information for materials scientists and engineers working in the fields of polymer technology, processing and engineering, enabling them to improve manufacture and testing methods, and to benefit fully from applications. The book also provides industrial and academic researchers with a comprehensive and up-to-date understanding of conductive composites and related issues. |
You may like...
Green Sustainable Process for Chemical…
Dr. Inamuddin, Tariq Altalhi, …
Paperback
R4,551
Discovery Miles 45 510
Durability and Reliability of Medical…
Mike Jenkins, Artemis Stamboulis
Hardcover
R4,034
Discovery Miles 40 340
Sustainable Composites for Aerospace…
Mohammad Jawaid, Mohamed Thariq
Paperback
Fluoropolymer Applications in the…
Sina Ebnesajjad, Pradip R Khaladkar
Hardcover
R7,078
Discovery Miles 70 780
|