![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Plastics & polymers technology
Rubber Toughened Engineering Plastics covers the main physical principles involved in optimum toughening in high temperature engineering plastics and speciality plastics and describes the synthetic strategies used to obtain satisfactorily toughened grades in these materials by control of microstructure. This book will act as a focus for current thought on the principles of rubber toughening and the methods employed for the rubber toughening of major engineering and speciality plastics.
P. S. HOPE and M. J. FOLKES Mixing two or more polymers together to produce blends or alloys is a well-established strategy for achieving a specified portfolio of physical proper ties, without the need to synthesise specialised polymer systems. The subject is vast and has been the focus of much work, both theoretical and experimental. Much ofthe earlier work in this field was necessarily empirical and many ofthe blends produced were of academic rather than commercial interest. The manner in which two (or more) polymers are compounded together is of vital importance in controlling the properties of blends. Moreover, particular ly through detailed rheological studies, it is becoming apparent that process ing can provide a wide range of blend microstructures. In an extreme, this is exemplified by the in situ formation of fibres resulting from the imposition of predetermined flow fields on blends, when in the solution or melt state. The microstructures produced in this case transform the blend into a true fibre composite; this parallels earlier work on the deformation of metal alloys. This type of processing-structure-property correlation opens up many new possi bilities for innovative applications; for example, the production of stiff fibre composites and blends having anisotropic transport properties, such as novel membranes. This book serves a dual purpose."
Polymers continue to play an ever increasing role in the modern world. In fact it is quite inconceivable to most people that we could ever have existed of the increased volume and variety of materials without them. As a result currently available, and the diversity of their application, characterisation has become an essential requirement of industrial and academic laboratories in volved with polymeric materials. On the one hand requirements may come from polymer specialists involved in the design and synthesis of new materials who require a detailed understanding of the relationship between the precise molecular architecture and the properties of the polymer in order to improve its capabilities and range of applications. On the other hand, many analysts who are not polymer specialists are faced with the problems of analysing and testing a wide range of polymeric materials for quality control or material specification purposes. We hope this book will be a useful reference for all scientists and techno or industrial laboratories, logists involved with polymers, whether in academic and irrespective of their scientific discipline. We have attempted to include in one volume all of the most important techniques. Obviously it is not possible to do this in any great depth but we have encouraged the use of specific examples to illustrate the range of possibilities. In addition numerous references are given to more detailed texts on specific subjects, to direct the reader where appropriate. The book is divided into II chapters."
This book defines the current state-of-the-art for predicting the lifetime of plastics exposed to weather and outlines the future research needed to advance this important field of study. Coverage includes progress in developing new science and test methods to determine how materials respond to weather exposure. This book is ideal for researchers and professionals working in the field of service life prediction. This book also: Examines numerous consensus standards that affect commercial products allowing readers to see the future of standards related to service life prediction Provides scientific foundation for latest commercially viable instruments Presents groundbreaking research including the blueprint of a new test method that will significantly shorten the service life prediction process time Covers two of the latest verified predictive models, which demonstrate realized-potential to transform the field
Polymer Latices, Second Edition is a comprehensive update of the previous edition, High Polymer Latices, taking into account the many developments since it was first published in 1966. It is the only publication to provide such an outstanding and extensive review of latex science and technology, from background theory and principles, to modern day applications. It will prove an invaluable reference source for all those working in the area of latex science and technology, such as colloid chemists, polymer scientists, and materials processors.
MALDI-TOF mass spectrometry is one of the latest and most fascinating new developments in the analysis of organic compounds. Originally developed for the analysis of biomolecules, it has developed into one of the most powerful techniques for the characterization of synthetic polymers. This book describes the fundamentals of the MALDI process and the technical features of MALDI-TOF instrumentation. It reviews the application of MALDI-TOF for identification, chemical and molar mass analysis of synthetic polymers. With many examples, this monograph examines in detail experimental protocols for the determination of endgroups, the analysis of copolymers and additives, and the coupling of liquid chromatography and MALDI-TOF.
Provides a thorough description of all major plastics processing methods, including theory and practice.
Photochromic polymer systems are of two main types - those which are merely solid solutions of photochromes in polymeric matrices and those custom-designed polymers which inherently exhibit photochromism. This book provides a concise review of developments in such systems over the past two decades. The coverage has been limited specifically to applied systems, or areas with potential applications, although over 500 references cite much of the literature on the fundamentals of the subject. The book aims to complement existing and recent books on photochromism which deal with low molecular weight photochromic systems mainly from a more fundamental perspective. It should appeal to industrial and academic researchers in materials science, chemistry, physics and electronics.
The rapidly-developing field of confined polymers is reviewed in this volume. Special emphasis is given to polymer aspects of this interdisciplinary problem. Taken together, the contributions offer ample evidence of how the field of polymer science continues to evolve with the passage of time. The topics revolve around the tendency of surfaces to impede chain relaxation and to stimulate new sorts of chain organization. These have been implicated in a variety of spectacular phenomena. Here is a listing of authors and affiliations: K. Binder (Johannes Gutenberg-Universit t Mainz, Germany); P.-G. de Gennes (College de France, France); E.P. Giannelis, R. Krishnamoorti, and E. Manias (Cornell University and University of Houston, USA); G.S. Grest (Exxon Research and Engineering Co., USA); L. Leger, E. Raphael, and H. Hervet (College de France, France); S.-Q. Wang (Case Western Reserve University, USA).
Biopolymers from Renewable Resources is a compilation of information on the diverse and useful polymers derived from agricultural, animal, and microbial sources. The volume provides insight into the diversity of polymers obtained directly from, or derived from, renewable resources. The beneficial aspects of utilizing polymers from renewable resources, when considering synthesis, pro cessing, disposal, biodegradability, and overall material life-cycle issues, suggests that this will continue to be an important and growing area of interest. The individual chapters provide information on synthesis, processing and properties for a variety of polyamides, polysaccharides, polyesters and polyphenols. The reader will have a single volume that provides a resource from which to gain initial insights into this diverse field and from which key references and contacts can be drawn. Aspects of biology, biotechnology, polymer synthesis, polymer processing and engineering, mechanical properties and biophysics are addressed to varying degrees for the specific biopolymers. The volume can be used as a reference book or as a teaching text. At the more practical level, the range of important materials derived from renewable resources is both extensive and impressive. Gels, additives, fibers, coatings and films are generated from a variety of the biopolymers reviewed in this volume. These polymers are used in commodity materials in our everyday lives, as well as in specialty products."
The two volumes 165 and 166 Polyelectrolytes with Defined Molecular Architecture summarize recent progress in the field. The subjects comprise novel polyelectrolyte architectures including planar, cylindrical and spherical polyelectrolyte brushes as well as micelle, complex and membrane formation. Some solution properties such as conformation of flexible polyions, osmotic coefficients and electrophoretic properties are addressed along with recent progress in analytical theory and simulation.
Understanding Injection Molds opens up the entire subject of injection mold technology, including numerous special procedures, in a well-grounded and practical way. It is specifically intended for beginners, young professionals, business owners, and engineering students. The chapters are clearly structured and easy to understand. The book is designed so that it provides a complete basic knowledge of injection molds in chronological order as well as day-to-day guidance and advice. The numerous colour figures facilitate a rapid understanding of the content, which is especially helpful to the beginner who wants to learn about injection molds quickly. In the forefront of the description are thermoplastic molds. Divergent processes for thermoset or elastomer molds are explained at the end of each chapter. This book captures the current state of the art, and is written by authors who are specialists in the field. The second edition has been updated and improved throughout.
Since publication of the first edition of this Handbook, the usage of thenno plastic elastomers (TPEs) has doubled, with a compounded annual growth rate of approximately 9 percent. This second edition summarizes and documents the technological and commercial progress that has given rise to this phenomenal rate of growth. Over the past decade, numerous suppliers and users of ther moplastic elastomers have entered the field, and some have retired from it, a process that almost certainly will continue. This Handbook is intended to serve the broad spectrum of professionals ac tively engaged in the field of thennoplastic elastomers, which has seen a growth rate four to six times that of the rubber and plastics industries. As TPEs embrace both rubber and plastics technology, this book will be useful to rubber and plastics technologists with a broad variety of specific interests. This edition emphasizes commercial practice and practical application rather than research activity. Technology and innovation are stressed, with polymer science functioning as a basis for understanding and communication. We have focused on those TPEs that we consider to be of significant commercial impor tance-the ones now used in the fabrication of useful articles, or which probably will be so used in the foreseeable future."
Volume C forms one volume of a Handbook about Polymer Nanocomposites. Volume C deals with Polymer nano-composites of cellulose nano-particles. The preparation, architecture, characterisation, properties and application of polymer nanocomposites are discussed within some 27 chapters. Each chapter has been authored by experts in the respective field.
In recent years various industries have demanded not only greater use of polymeric materials but also the development of polymeric materials with specific properties. Major users include the automotive and transport industries, electrical and electronics industries, and the packaging industry. Following the success of "Speciality Polymers", Dr Dyson's book provides an overview of the main types of polymeric materials used in engineering, and discusses their applications - both practical and potential.
Because of the many important new developments in other branches of science, some scientists fail to recognize that the volume of polyolefins produced annually is greater than that of all metals. Hence, the American Chemical Society s"ponsored symposia on the History of Polyolefins at its national meeting at Miami Beach in the Spring of 1985 and a Macromolecular Secretariat on Advances in Polyolefins at its national meeting in Chicago in the fall of that year. The books on the proceedings of these landmark symposia and another book entitled "The Chain Straighteners" by Dr. F. M. McMillan will provide the scientist with background information which is essential for re- searchers in this important phase of polymer science. The presentations at these international symposia and the publica- tions of the reports presented, would not be possible without the dedicated efforts of our assistant editors and publisher. The list of contributors to ADVANCES IN POLYOLEFINS includes most of the leaders in this field, such as Dr. Mark, Mandelkern, Bruzzone, Hsieh, Kaneda, Chien, Tait, Karol, Kaminisky, Scott, Cook, Mirabella, Samuels, Kanamoto and Vigo. These reports covered many phases of polyolefin science and technol- ogy, ranging from elastomers, single crystals, film and fibers to char- acterizations by modern instrumentation and many new innovations in catalysis which have brought about a revolution in polyolefin production.
This book is the definitive reference on phase-transfer catalysis (PTC), written by the three foremost industrial and academic PTC experts in the world. Phase-Transfer Catalysis, the first practical guide to performing PTC in industry, includes key information and analyses found in no other publication. It will be a valuable resource for synthetic organic chemists, polymer chemists, process chemists, developmental chemists, and chemical engineers in academia and industry. Organic process chemists seeking greater process flexibility, reduced manufacturing costs and pollution, and easier compliance with environmental regulations will find it an indispensable reference. The book provides a thorough introduction to the fundamentals of PTC as a synthetic organic chemistry technique, including reaction mechanisms, selectivity, rates, and kinetics. It gives specific guidelines on how to optimize catalyst, solvent, base, hydration, and more, based on reaction characteristics. The section on applications includes nucleophilic displacement reactions, oxidation and reduction reactions, and such special topics as insoluble PTC (triphase catalysis), polymerization, chiral catalysis, applications in environmental and analytical chemistry, and transition metal co-catalyzed PTC. Throughout the book, PTC applications in key industries are discussed - including organic chemicals, polymers, pharmaceuticals, agrichemicals, monomers, petrochemicals, flavors and fragrances, additives, dyes, and specialty chemicals.
Written by an international team of authors with a strong emphasis on the underlying chemistry, this book forms a timely, concise, and accessible evaluation of the fundamentals of polymer network formation, structure, and properties, and how these three aspects are interrelated.
Chemical modification of polymers by reactive modifiers is no longer an academic curiosity but a commercial reality that has delivered a diverse range of speciality materials for niche markets: reactively grafted styrenic alloys, maleated polyolefins, super-tough nylons, silane modified and moisture-cured polyolefins, and thermoplastic elastomers, are but few exam ples of commercial successes. Although the approach of reactive modification of polymers has been largely achieved either in solution or in the solid state (through in situ reactions in polymer melts), it is the latter route that has attracted most attention in the last two decades owing to its flexibility and cost-effective ness. This route, referred to as reactive processing, focuses on the use of suitable reactive modifier(s) and the adoption of conventional polymer processing machinery, an extruder or a mixer, as a chemical reactor, to perform in situ targeted reactions for chemical modification of preformed polymers. This relatively simple, though scientifically highly challenging, approach to reactive modification offers unique opportunities in exploiting various reactive modifiers for the purpose of altering and transforming in a controlled manner the properties of preformed commercial polymers into new/speciality materials with tailor-made properties and custom-designed performance for target applications. Such an economically attractive route constitutes a radical diversion away from the traditional practices of manufacturing new polymers from monomers which involves massive in vestments in sophisticated technologies and chemical plants."
During the past decade, the field of polymer degradation and stabilization has become a subject of central importance in polymer science and technology. This book provides a fundamental source of information designed for those with only a basic understanding of the background of the field.
This paper combines data on production, on processing and formulating, on application, on the waste stream and on the possibilities for recycling polyvinyl chloride insofar as such data has relevance for an assessment of environmental impact. It is intended to help place the PVC debate on a factually well-founded basis. The paper describes many, but not all facets of the environmental effects of a common plastic. This book is based on work carried out at the Fraunhofer Institute for Systems Technology and Innovations Research and particularly on a report drawn up on the order of the Research Centre Julich (Gaensslen, H. , Sordo, M. , TOtsch, W. : Production, Processing and Recycling of PVC. Order Number 011/41072711/930, April 1989). We would like to express our thanks to Dr. Kollmann of KFA Julich for placement of this order. This book would not have come into being but for the assistance given by many colleagues. Magdalena Sordo carried out valuable preliminary work which forms the basis of many parts of the book. We would like to thank the following as representatives of our other colleagues: Eberhard BOhm for proof reading, Gunther Heger for the data base researches and Joachim Waibel for producing the illustrations. The book has been translated by H. P. Kaufmann, Technical Translations, Marketing & Advisory Services, London. We are especially grateful to Harold M. Clayton and his colleagues at Hydro Polymers Ltd for proof-reading the English manuscript. vii Contents Preface 1.
The fluorine atom, by virtue of its electronegativity, size, and bond strength with carbon, can be used to create compounds with remarkable properties. Small molecules containing fluorine have many positive impacts on everyday life of which blood substitutes, pharmaceuticals, and surface modifiers are only a few examples. Fluoropolymers, too, while traditionally associated with extreme high performance applications have found their way into our homes, our clothing, and even our language. A recent American president was often likened to the tribology of PTFE. Since the serendipitous discovery of Teflon at the DuPont Jackson Laboratory in 1938, fluoropolymers have grown steadily in technological and marketplace importance. New synthetic fluorine chemistry, new processes, and new apprecia tion of the mechanisms by which fluorine imparts exceptional properties all contribute to accelerating growth in fluoropolymers. There are many stories of harrowing close calls in the fluorine chemistry lab, especially from the early years, and synthetic challenges at times remain daunting. But, fortunately, modem techniques and facilities have enabled significant strides toward taming both the hazards and synthetic uncertainties, In contrast to past environmental problems associated with fluorocarbon refrigerants, the exceptional properties of fluorine in polymers have great environmental value. Some fluoropolymers are enabling green technologies such as hydrogen fuel cells for automobiles and oxygen selective membranes for cleaner diesel combustion. |
![]() ![]() You may like...
Extremum Seeking through Delays and PDEs
Tiago Roux Oliveira, Miroslav Krstic
Hardcover
Modeling, Dynamics, Optimization and…
Alberto Adrego Pinto, David Zilberman
Hardcover
R4,518
Discovery Miles 45 180
Badass Trader - How To Trade Your Way To…
Robert J Van Eyden
Paperback
Problems & Solutions in Inventory…
Dinesh Shenoy, Roberto Rosas
Hardcover
R2,756
Discovery Miles 27 560
Android on x86 - An Introduction to…
Iggy Krajci, Darren Cummings
Paperback
R2,153
Discovery Miles 21 530
Continuum Mechanics, Applied Mathematics…
Gennadii V. Demidenko, Evgeniy Romenski, …
Hardcover
R2,938
Discovery Miles 29 380
|