Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Plastics & polymers technology
The technique of smal1-angle soattering (SAS) is now about sixty years o1d. Soon after the first observations of, a continuous, intense X-ray scattering near the primary beam from samp1es such as canbo:tt,bla:cks, it was recognized that this scattering arose from e1ectron density heterogeneities on a scale of severa! tens to severa! hundred times the wave1ength of the radiation used. By the time the classic monograph of Guinier and Foumet appeared in 1955, much of the basic theory and instrumentation had been developed, and applications to colloidal suspensions, macromolecular solutions inc1uding proteins and viruses, fibers, porous and finely divided solids, metallic alloys etc. numbered in the hundreds. Following severa! specialized meetings, the first international conference on small-ang1e X-ray scattering was helditi, Syracuse in 1965, marked by the presentation of new scattering theory for polydisperse systems, polymer coils and filaments, new instrumentation (the Bonse-Hart camera), and new applications to polymeric, biologica!, and metallic systems, to critica! phenomena and to catalysts. The second conference (Graz, 1970) no longer dealt exclusively with X- ray scattering, but also inc1uded neutron small-angle scattering (SANS). SANS applications developed rapidly during this period, especially for studying synthetic and biologica! macromolecules, when the possibilities of exploiting scattering Iength density differences, created by selective deuteration, were recognized.
This multicontributor volume reviews the state-of-the-art in this important area of polymer structure. The understanding of polymer structure and morphology is examined from both theoretical and experimental viewpoints. Includes crystalline, amorphous and liquid crystalline polymers.
In Uses of Immobilized Biological Compounds the reader will find a comprehensive survey of the field written by acknowledged experts who met in Brixen, Italy, between May 9 and 14, 1993 for a NATO Advanced Research Workshop devoted to the topic. The resulting volume presents a critical review of the latest results in the area and sets guidelines for future research. The 53 reports presented here cover: (A) General Aspects of Immobilizing Biological Compounds; (B) Medical, Clinical and Pharmaceutical Applications; (e Electrochemical Biosensors; (E) Defense Applications; (F) Immunosensors and Receptors; (G) Food, Environmental, Clinical and Analytical Applications; and (H) Biotechnology and Marketing. In short, all aspects of the area are presented, in a compact format which will appeal to undergraduates, technicians, and professional scientists in the food, clinical, environmental, pharmaceutical and industrial fields.
This volume covers advanced polymer processing operations and is designed to provide a description of some of the latest industry developments for unique products and fabrication methods. Contributors for this volume are from both industry and academia from the international community. This book contains nine chapters covering advanced processing applications and technologies.
Derived from the fourth edition of the well-known "Plastics Technology Handbook," Industrial Polymers, Specialty Polymers, and Their Applications covers a wide range of general and special types of polymers, along with a wealth of information about their applications. The book first focuses on commonly used industrial polymers, including polypropylenes, low- and high-density polyethylenes, and poly(vinyl chloride), as well as less widely used polymer types, such as acrylics, ether polymers, cellulosics, sulfide polymers, silicones, polysulfones, polyether ether ketones, and polybenzimidazoles. It then explores polymer derivatives and polymeric combinations that play special and often critical roles in diverse fields of human activities. The polymers covered include liquid crystal, electroactive, ionic, and shape memory polymers; hydrogels; and nanocomposites. The volume concludes with a comprehensive overview of new developments in the use of polymers in a variety of areas.
Plastic objects are included more than ever in museums and galleries collections these days, but these items can start to deteriorate when they a just a few years old. In this book Yvonne Shashoua provides the essential knowledge needed to keep plastic pieces in the best possible condition so that they can continue to be enjoyed for many years. The historical development of plastics, as well as the technology, their physical and chemical properties, identification, degradation and conservation are all clearly and concisely covered within this single volume, making it an invaluable reference for the increasing number of conservators and curators that are encountering plastics in their day to day work.
This book constitutes the Proceedings of the NATO Advanced Research Workshop on Conjugated Polymers held at the University of Mons, Belgium, during the first week of September 1989. The Workshop was attended by about fifty scientists representing most of the leading research groups within NATO countries, that have contributed to the development of conjugated polymeric materials. The program was focused on applications related to electrical conductivity and nonlinear optics. The attendance was well balanced with a blend of researchers from academic, industrial, and government labs, and including synthetic chemists, physical chemists, physicists, materials scientists, and theoreticians. The Workshop provided an especially timely opportunity to discuss the important progress that has taken place in the field of Conjugated Polymers in the late eighties as well as the enormous potential that lies in front of us. Among the recent significant developments in the field, we can cite for instance: (i) The discovery of novel synthetic routes affording conjugated polymers -that are much better characterized, especially through control of the molecular weight; - that can be processed from solution or the melt; the early promise that conducting polymcrs would constitute materials combining the electrical conductivities of metals with the mechanical properties of plastics is now being realized; -that can reach remarkably high conductivities.
This book is devoted to a nontraditional class of materials which are manufactured by the melt-blowing process - i.e. by extrusion of polymer melt followed by fiber stretching with a gas stream. For the first time extensive data on classical and modern modifications of this technology are generalized and a review is given of extrusion head dies and subsidiary equipment. The text examines the structure and main properties of melt-blown materials as conditioned by peculiarities of overheated polymer melt spraying in an oxidizing medium. Information is given about filtering mechanisms and the main types of polymer fibrous filtering materials: electret, magnetic, adsorptional, bactericidic, and about carriers of microorganisms in biofilters. Social and ecological aspects of the application of melt-blown materials are analyzed.
In this book a systematic discussion of crack problems in elastic-plastic materials is presented. The state of the art in fracture mechanics research and assessment of cracks is documented, with the help of analytic, asymptotic methods as well as finite element computations. After a brief introduction to fracture mechanics, the two-parameter concept for stationary cracks is studied in addition to the issues in three-dimensional crack fields under coupling with strong out-of-plane effects. Cracks along interfaces and crack growth problems under mixed mode conditions are also treated. A systematic study of stress singularities for different notches is accompanied by detailed finite element computations.
* It has been rumored that a bumble bee has such aerodynamic deficiencies that it should be incapable of flight. Fiberglass-reinforced polymer com posites, similarly, have two (apparently) insurmountable obstacles to per formance: 1) Water can hydrolyze any conceivable bond between organic and inorganic phase, and 2) Stresses across the interface during temperature cycling (resulting from a mismatch in thermal expansion coefficients) may exceed the strength of one of the phases. Organofunctional silanes are hybrid organic-inorganic compounds that are used as coupling agents across the organic-inorganic interface to help overcome these two obstacles to composite performance. One of their functions is to use the hydrolytic action of water under equilibrium condi tions to relieve thermally induced stresses across the interface. If equilib rium conditions can be maintained, the two problems act to cancel each other out. Coupling agents are defined primarily as materials that improve the practical adhesive bond of polymer to mineral. This may involve an increase in true adhesion, but it may also involve improved wetting, rheology, and other handling properties. The coupling agent may also modify the inter phase region to strengthen the organic and inorganic boundary layers."
This handbook collects over 800 infrared spectra of rubbers, plastics and thermoplastics elastometers. It contains five different libraries: rubbers in transmission spectroscopy, rubbers in pyrolysate spectroscopy, plastics in transmission spectroscopy, plastics in pyrolysate spectroscopy, and rubbers and plastics in single-bounce ATR spectroscopy. This is an invaluable reference for the rubbers and plastics industry.
This book is about thin films; what they are, how they are prepared, how they are characterized, and what they are used for. The contents of this book not only showcase the diversity of thin films, but also reveals the commonality among the work performed in a variety of areas. The chapters in this volume are based on invited papers presented by prominent researchers in the field at a Symposium on "Thin Films: Preparation, Characterization, Applications" at the 221st National Meeting of the American Chemical Society held in San Diego, California. The coverage of the symposium was extensive; topics ranged from highly-ordered metal adlayers on well-defined electrode surfaces to bio-organic films on non-metallic nanoparticles. An objective of this book is for the readers to be able to draw from the experience and results of others in order to improve and expand the understanding of the science and technology of their own thin films systems.
Polymer Microscopy, 3rd Edition, is a comprehensive and practical guide to the study of the microstructure of polymers, and is the result of the authors' many years of academic and industrial experience. To address the needs of students and professionals from a variety of backgrounds, introductory chapters deal with the basic concepts of both polymer morphology and processing and microscopy and imaging theory. The core of the book is more applied, with many examples of specimen preparation and image interpretation leading to materials characterization.Microscopy is applied to the characterization of a wide range of polymer systems, including fibers, films, engineering resins and plastics, composites, nanocomposites, polymer blends, emulsions and liquid crystaline polymers. Light microscopy, atomic force microscopy, scanning and transmission electron microscopy techniques are all considered, as are emerging techniques such as compositional mapping in which microscopy is combined with spectroscopy. This extensively updated and revised third edition closes with a problem solving guide, which gives a systematic framework for deciding on suitable approaches to the characterization of
Blends of natural rubber with speciality synthetic rubbers, such as nitrile rubber and ethylene propylene rubbers, have, in the past, failed to combine the best properties of polymers, resulting in a poor return in terms of added value from the blending process. The idea of blending synthetic rubbers with natural rubbe is certainly not a new one, but it is only now that this can be shown to be possible with consistently positive resluts, but eh use of novel techniques which this book describes, giving valuable information on the technology required and the results which can be achieved. Blends of Natural Rubber is an invaluable source of information for all those working in the area of rubber technology and polymer blend technology.
This book is designed for the chemist, formulator, student, teacher, forensic scientist, or others who wish to investigate the composition of polymeric materials. Theinformationwithinthesepagesisintendedtoarmthereaderwiththenecessary workingknowledgetoanalyze, characterize, anddeformulatematerials. ThestructureoftheContentsisintendedtoassistthereaderinquicklylocating the subject of interest and proceed to it with a minimum of expended time and effort. The Contents provides an outline of major topics and relevant materials char- terizedforthereader'sconvenience. Anintroductiontoanalysisanddeformulation is provided in Chapter 1 to acquaint the reader with analytical methods and their applications. Extensive references are provided as additional sources ofinfor- tion. All tables arelocatedin theAppendix, beginning onp. 235. GUIDE FOR USE This is a practical book structured to efficiently use the reader's time with a minimum effort of searching for entries and information by following these brief instructions: 1. Searchthe Contents and/orIndex fora subject withinthe text. 2. Analysis/deformulation principles are discussed at the outset to familiarize the reader with analysis methods and instruments; followed by formu- tions, materials, and analysis ofpaint, plastics, adhesives, and inks; and finally reformulation methods to test the results of analysis. 3. Materials and a wide assortment of formulations are discussed within the text by chapter/section number. 4. Materials are referred toby various names (trivial, trade, and scientific), and these are listed in tables and cross-referenced to aid the reader.
After epoxy resins and polyimides, cyanate esters arguably form the most well-developed group of high-temperature, thermosetting polymers. They possess a number of desirable performance characteristics which make them of increasing technological importance, where their somewhat higher costs are acceptable. The principal end uses for cyanate esters are as matrix resins for printed wiring board laminates and structural composites. For the electronics markets, the low dielectric loss characteristics, dimen sional stability at molten solder temperatures and excellent adhesion to conductor metals at temperatures up to 250 DegreesC, are desirable. In their use in aerospace composites, unmodified cyanate esters offer twice the frac ture toughness of multifunctional epoxies, while achieving a service tem perature intermediate between epoxy and bis-maleimide capabilities. Applications in radome construction and aircraft with reduced radar signatures utilize the unusually low capacitance properties of cyanate esters and associated low dissipation factors. While a number of commercial cyanate ester monomers and prepoly mers are now available, to date there has been no comprehensive review of the chemistry and recent technological applications of this versatile family of resins. The aims of the present text are to present these in a com pact, readable form. The work is primarily aimed at materials scientists and polymer technologists involved in research and development in the chemical, electronics, aerospace and adhesives industries. It is hoped that advanced undergraduates and postgraduates in polymer chemistry and technology, and materials science/technology will find it a useful introduc tion and source of reference in the course of their studies.
Few polymer chemists have much familiarity with recent developments in the synthesis of speciality polymers. This volume provides up-to-date reviews of areas of current interest and is directed at polymer chemists in the academic world and industry.
Liquid crystal polymers (LCPs) have many strange properties that may be utilized to advantage in the processing of products made from them and their blends with isotropic polymers. This volume (volume 2 in the series Polymer Liquid Crystals) deals with their strange flow behaviour and the models put forward to explain the phenomena that occur in such polymers and their blends. It has been known for some time that small ad ditions of a thermotropic LCP to isotropic polymers not only gives an improvement in the strength and stiffness of the blend but improves the processability of the blend over that of the isotropic polymer. In the case of lyotropic LCPs, it is possible to create a molecular composite in which the reinforcement of an isotropic polymer is achieved at a molecular level by the addition of the LCP in a common solvent. If the phenomena can be fully understood both the reinforcement and an increase in the proces sability of isotropic polymers could be optimized. This book is intended to illustrate the current theories associated with the flow of LCPs and their blends in the hope that such an optimization will be achieved by future research. Chapter 1 introduces the subject of LCPs and describes the ter minology used; Chapter 2 then discusses the more complex phenomena associated with these materials. In Chapter 3, the way in which these phe nomena may be modelled using hamiltonians is fully covered."
About ten years after the publication of the Second Edition (1973), it became apparent that it was time for an up-date of this book. This was especially true in this case, since the subject matter has traditionally dealt mainly with the structure, properties, and technology of the various elastomers used in industry, and these are bound to undergo significant changes over the period of a decade. In revising the contents of this volume, it was thought best to keep the orig inal format. Hence the first five chapters discuss the same general subject matter as before. The chapters dealing with natural rubber and the synthetic elastomers are up-dated, and an entirely new chapter has been added on the thermoplastic elastomers, which have, of course, grown tremendously in importance. Another innovation is the addition of a new chapter, "Miscellaneous Elastomers," to take care of "old" elastomers, e.g., polysulfides, which have decreased some what in importance, as well as to introduce some of the newly-developed syn thetic rubbers which have not yet reached high production levels. The editor wishes to express his sincere appreciation to all the contributors, without whose close cooperation this task would have been impossible. He would especially like to acknowledge the invaluable assistance of Dr. Howard Stephens in the planning of this book, and for his suggestion of suitable authors."
Synthetic Polymers is a comprehensive introduction to the technologies involved in the synthesis of the main classes of engineering high polymers used in such materials as plastics, fibers, rubbers, foams, adhesives and coatings. Besides the basic processes, this volume includes information on physical, chemical and mechanical characteristics - key factors with respect to obtaining the right end products. It also focuses on the main application of synthetic polymers in different engineering areas and gives data on production and consumption. Over 60 technological flowcharts are presented in a clear and concise manner, to provide the reader with essential information on relevant operations.
Polymers are ubiquitous and pervasive in industry, science, and technology. These giant molecules have great significance not only in terms of products such as plastics, films, elastomers, fibers, adhesives, and coatings but also less ob viously though none the less importantly in many leading industries (aerospace, electronics, automotive, biomedical, etc.). Well over half the chemists and chem ical engineers who graduate in the United States will at some time work in the polymer industries. If the professionals working with polymers in the other in dustries are taken into account, the overall number swells to a much greater total. It is obvious that knowledge and understanding of polymers is essential for any engineer or scientist whose professional activities involve them with these macromolecules. Not too long ago, formal education relating to polymers was very limited, indeed, almost nonexistent. Speaking from a personal viewpoint, I can recall my first job after completing my Ph.D. The job with E.I. Du Pont de Nemours dealt with polymers, an area in which I had no university training. There were no courses in polymers offered at my alma mater. My experience, incidentally, was the rule and not the exception." |
You may like...
Polymer Engineering
Bartosz Tylkowski, Karolina Wieszczycka, …
Hardcover
R3,428
Discovery Miles 34 280
Cellulose Composites - Processing and…
Pawan Kumar Rakesh, J. Paulo Davim
Hardcover
R4,397
Discovery Miles 43 970
100+ Years of Plastics - Leo Baekeland…
E. Thomas Strom, Seth Rasmussen
Hardcover
R5,405
Discovery Miles 54 050
Polymer-Inorganic Nanostructured…
Kostyantyn M. Sukhyy, Elena A. Belyanovskaya
Hardcover
R6,737
Discovery Miles 67 370
ZIF-8 Based Materials for Water…
Awais Ahmad, Muhammad Pervaiz, …
Hardcover
R4,745
Discovery Miles 47 450
|