![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Plastics & polymers technology
This book provides an overview of polyolefine production, including several recent breakthrough innovations in the fields of catalysis, process technology, and materials design. The industrial development of polymers is an extraordinary example of multidisciplinary cooperation, involving experts from different fields. An understanding of structure-property and processing relationships leads to the design of materials with innovative performance profiles. A comprehensive description of the connection between innovative material performance and multimodal polymer design, which incorporates both flexibility and constraints of multimodal processes and catalyst needs, is provided. This book provides a summary of the polymerization process, from the atomistic level to the macroscale, process components, including catalysts, and their influence on final polymer performance. This reference merges academic research and industrial knowledge to fill the gaps between academic research and industrial processes. * Connects innovative material performance to the flexibility of multimodal polymer design processes; * Provides a comprehensive description of the polymerization process from the atomic level to the macroscale; * Presents a polyhedric view of multimodal polymer production, including structure, property, and processing relationships, and the development of new materials.
Thermosets: Structure, Properties, and Applications, Second Edition builds on and updates the existing review of mechanical and thermal properties, as well as rheology and curing processes of thermosets, and the role of nanostructures in thermoset toughening. All chapters have been updated or re-written, and new chapters have been added to reflect ongoing changes and developments in the field of thermosetting materials and the applications of these materials. Applications of thermosets are the focus of the second part of the book, including the use of thermosets in the building and construction industry, aerospace technology and as insulation materials. Thermoset adhesives and coatings, including epoxy resins, acrylates and polyurethanes are also discussed, followed by a review of thermosets for electrical applications. New chapters include coverage of thermoset nanocomposites, recycling issues, and applications such as consumer goods, transportation, energy and defence. With its distinguished editor and international team of expert contributors, the second edition of Thermosets: Structure, Properties, and Applications is an essential guide for engineers, chemists, physicists and polymer scientists involved in the development, production and application of thermosets, as well as providing a useful review for academic researchers in the field.
Polyurethane Polymers: Composites and Nanocomposites concentrates on the composites and nanocomposites of polyurethane based materials. Polyurethane composites are a very important class of materials widely used in the biomedical and industrial field that offer numerous potential applications in many areas. This book discusses current research and identifies future research needs in the area.
Shape-Memory Polymer Device Design discusses the latest shape-memory polymers and the ways they have started to transition out of the academic laboratory and into devices and commercial products. Safranski introduces the properties of shape-memory polymers and presents design principles for designing and manufacturing, providing a guide for the R&D engineer/scientist and design engineer to add the shape memory effect of polymers into their design toolbox. This is the first book to focus on applying basic science knowledge to design practical devices, introducing the concept of shape-memory polymers, the history of their use, and the range of current applications. It details the specific design principles for working with shape-memory polymers that don't often apply to mechanically inactive materials and products. Material selection is thoroughly discussed because chemical structure and thermo-mechanical properties are intrinsically linked to shape-memory performance. Further chapters discuss programming the temporary shape and recovery through a variety of activation methods with real world examples. Finally, current devices across a variety of markets are highlighted to show the breadth of possible applications.
The 20th Century World has been transformed by the discovery and
use of plastics. Today plastic materials are used in a wide variety
of applications, from building and construction to packaging, from
sports equipment to transportation. The vast number of plastics
materials discovered over the past 40 years and their wide range of
properties make them uniquely suited to a very broad spectrum of
applications. This combination of the successful utilisation of the materials
and the number of types of material available has led to the growth
of an array of technical terms within the field. The "Dictionary"
is intended as a reference tool for readers to negotiate these
terms. The main part of the "Technical Dictionary of Plastics
Materials" presents a comprehensive set of extended definitions of
technical terms relating to all facts of the materials aspect of
plastics technology. The definitions cover the nature of plastics
materials, their composition (including relevent non-polymeric
componants and additives, such as stabilisers, fillers, colourants,
etc), their properties (including methods of property
determination, testing, and evaluation), their applications, and
their handling and behaviour in processing. In many cases reference
is given to the relevant technical standards from the International
(ISO), British (BSI), and American (ASTM) standards. In addition to the main part of the "Dictionary" containing the
definitions there are two further sections. The first gives
explanations of the abbreviated terms (letter symbols) used for the
parent polymer and for the other constituents of plastics
materials, while the second identifies the trade names of a number
of plastics materials and their components.
Plasticizer Databook contains data on selection of the most important plasticizers in use today. The selection includes 375 generic and commercial plasticizers. The generic plasticizers contain data for particular chemical compound from numerous sources and these generic plasticizer tables usually contain the most extensive information. The commercial plasticizers include only data given by plasticizer manufacturers. This allows comparison of properties of commercial plasticizers coming from different sources. The databook was developed to contain data required in
plasticizers application. Attempts have been made to include
plasticizers used in various sectors of industry to provide
information for all users and to help in finding new solutions.
Plasticizers included in the book differ from solvents by boiling
point, which is above 250oC, but some plasticizers are used as
temporary plasticizers or are expected to react with other
components of mixture. These substances will not meet the boiling
temperature criterion but will still be included since they play
role of plasticizers. Includes 375 generic and commercial plasticizers. Divided into sections for ease of use.
This book offers in-depth insights into the photochemical behavior of multicomponent polymeric-based materials, with a particular emphasis on the photodegradation and photostabilization of these materials. Studying various classes of materials bases such as polysaccharides, wood, synthetic polymers, rubber blends, and nanocomposites, it offers a valuable reference source for graduate and postgraduate students, engineering students, research scholars and polymer engineers working in industry.
Lignocellulosic Fibre and Biomass-Based Composite Materials reviews the development, characterization and applications of composite materials developed from the effective use of lignocellulosic fibre and biomass. The book gathers together a wide spectrum of cutting-edge research on biomass fillers and reinforcements used for the fabrication and synthesis of composites. The book takes a systematic approach, investigating processing, design, characterization and applications of biocomposites, in order to establish their important relationship as a general guideline for end-user applications. Beginning with an introduction to biomass and its composites, a team of leading experts in the field cover rice husk, kenaf, oil palm, alfa and doum fibres, bamboo, cork, and many other materials, considering a range of applications, along with key issues such as performance and sustainability. The groundbreaking research presented opens the door to obtaining advanced material characteristics and significant enhancements in physical, mechanical, and thermal properties. This will be become an extremely useful reference and technical guide for academic and industrial researchers in composite materials, as well as for advanced students and industrialists working in material commercialization.
Characterization of Polymeric Biomaterials presents a comprehensive introduction on the topic before discussing the morphology and surface characterization of biomedical polymers. The structural, mechanical, and biological characterization is described in detail, followed by invaluable case studies of polymer biomaterial implants. With comprehensive coverage of both theoretical and experimental information, this title will provide scientists with an essential guide on the topic of these materials which are regularly used for clinical applications, such as implants and drug delivery devices. However, a range of novel polymers and the development and modification of existing medical polymers means that there is an ongoing need to satisfy particular design requirements. This book explains the critical and fundamentals methods to characterize polymer materials for biomedical applications.
In Carbon Fiber Composites, the reader is introduced to a wide
range of carbon fiber composites, including polymer-matrix, metal
matrix, carbon-matrix, ceramic-matrix and hybrid composites. The
subject is examined in a tutorial fashion, so that no prior
knowledge of the field is required. In contrast to other books on
composites, this book emphasizes materials rather than mechanics,
as the prominence of composite materials has resulted from their
increased presence in applications other than structure.
The use of plastics in agriculture - to increase crop output, improve food quality and improve sustainability - has grown substantially in both quantity and the range of applications. Many of the early researchers that conducted field research in the use of plastics in agriculture have either retired or are deceased. These early pioneers in plasticulture research, the basis of plant production using plastics, were very creative and persistent in discovering uses of plastics in agricultural applications. A Guide to the Manufacture, Performance, and Potential of Plastics in Agriculture contains both references not only to their accomplishments but also their publications. The book discusses plasticulture-the basis of plant production using plastics - including topics such as plastic mulch, row covers, drip irrigation, and high/low tunnels. It covers the process of producing polyethylene and polypropylene plastics that are used in plant and animal production agriculture, and the many uses of plastics in all aspects of agriculture, including plastic greenhouses, rigid mold plastics, disposal of plastics, and plastics in animal production. This book introduces a range of academics and industrial practitioners to the impact of plastics in agriculture, both historically and in a range of current applications. It also provides new perspectives on future developments to enable further research and application. It is an invaluable reference on the use of polyethylene, polypropylene films, and such products in all aspects of agricultural production.
This book assesses harmful effects of plastics on the environment and public health. Risk assessment of plastics is required to evaluate currently available treatment technologies and identify the significance of plastic pollution. This book covers background information concerning plastic pollution in the environment, sources and pathways of plastics, characterization and analysis of plastics in the environment, environmental risks of plastics, public health risk of plastics, life cycle approaches in assessing plastic pollution, preventive measures of plastic pollution, fate and transport of plastics, and summary and outlook. The content of the book focuses on assessment of risks of plastics (including nano- and micro-plastics) released into the environment, and it is designed to educate fundamental aspects of plastic materials, including potential risks to the public health and environment, approaches to assessing their harmful effects, prevention of plastic pollution, and environmentally sound technologies for recycling plastics and/or converting them into renewable energy sources. Readers, particularly those in the field of toxicology, materials, environmental policy, public health, and water treatment, benefit from this book's content and educational features, in perspectives of providing knowledge in the environmental field, namely the current status and technology developments for avoiding or minimizing plastic contamination, case studies used to assess environmental and public health risks of micro- and nano-plastics, and educational recommendations in resolving issues with global plastic pollution.
No other book on natural rubber covers such a broad spectrum of subjects as this unique publication. Subjects related to the biology, cultivation and technology of natural rubber are dealt with, along with such important aspects as its history, production and processing, through to its sophisticated engineering applications. Every chapter follows a monograph style of presentation, with comprehensive citations and depth of treatment. Contributions from highly experienced, and still active, renowned scientists reflect the truly international effort to the development of this commodity. In addition to the wealth of information presented, most of the chapters contain elaborate lists of earlier contributions in the respective fields; one chapter each has been included on rubber wood, ancillary products and guayule.
This book describes the development of three dimensional electroactive fibres using a novel coaxial wet-spinning approach from organic conductors in combination with non-conducting hydrogel polymers. This book also presents the characterization and evaluation of multiaxial biofibres in terms of mechanical, physical, electrochemical and biological properties, and explores their use in a diverse range of applications including implantable electrodes, drug delivery systems and energy-storage systems. In the first chapter, the author highlights the significance of engineering three dimensional fibres, introduces the involved hydrogels and organic conductors with emphasis on their biomedical application, and collects some of the previously established methods for fabrication of biofibres. In the second chapter, particular attention is given to the overall experimental fabrication methods and characterization analyses conducted in the work. Chapters three to five present the main findings of this work, in which readers will discover how novel hybrid hydrogel fibres with an inner core of chitosan and alginate were prepared and characterized, how graphene was incorporated into coaxial wet-spun biofibres, and how one-dimensional triaxial fibres were developed using a novel coaxial wet-spinning fibre production method and applied as potential battery devices. In the final chapter of this work, the author summarizes the main achievements of the work and outlines some recommendations for future research.
A book intended for food science researchers, technologists, students, and polymer chemists.;A fundamental understanding of polymers has evolved in recent years concurrent with advances in analytical instrumentation. The theories and methodologies developed for the galacturonan biopolymers (collectively called pectins) have seldom been discoursed comprehensively in the context of the new knowledge. This text explains the scientific and technical basis of many of the practices followed in processing and preparing foods fabricated with or containing pectin. The material is presented in a very readable fashion for those with limited technical training. Topics discussed include structural analysis, commercial extractions methods, pectin formulations and tropical fruit analysis, molecular mechanisms of gelatin, enzymology, and polymer confrontation techniques.
This book is a comprehensive collaboration on intelligent polymers and coatings for industrial applications by worldwide researchers and specialists. The authors cover the basis and fundamental aspects of intelligent polymers and coatings, challenges, and potential mechanisms and properties. They include recent and emerging industrial applications in medical, smart textile design, oil and gas, electronic, aerospace, and automobile industries as well as other applications including microsystems, sensors, and actuators, among others. The authors discuss the potential for future research in these areas for improvement and growth of marketable applications of intelligent polymers and coatings.
This book describes the tremendous progress that has been made in the development of gas separation membranes based both on inorganic and polymeric materials. Materials discussed include polymer inclusion membranes (PIMs), metal organic frameworks (MOFs), carbon based materials, zeolites, as well as other materials, and mixed matrix membranes (MMMs) in which the above novel materials are incorporated. This broad survey of gas membranes covers material, theory, modeling, preparation, characterization (for example, by AFM, IR, XRD, ESR, Positron annihilation spectroscopy), tailoring of membranes, membrane module and system design, and applications. The book is concluded with some perspectives about the future direction of the field.
As new applications are developed and plastics replace traditional materials in a widening spectrum of existing applications, the potential personal injury, property damage, financial and legal consequences of failure can be high. However, nearly half of plastics failure can be traced back to the original specification and selection of the material. This book gives engineers the data they need to make an informed decision about the materials they use in their products, imparting a thorough knowledge of the advantages and disadvantages of the various materials to choose from. The data also suggests other candidate materials which the reader may not have originally considered. More than 30,000 thermoplastics grades are grouped into circa. 300 subfamilies, within which over 20 properties are assessed. The abundance or scarcity of a material and its cost are also often important deciding factors. In this book, an economical overview of the plastics industry helps clarify the actual consumption and costs of thermoplastics including bioplastic, and the relationship of cost vs. performance is also examined for each thermoplastic subfamily. Immediate and long-term common properties are reviewed, including mechanical behavior, impact, thermal properties, and many more. Environmental considerations are also covered, including ease of recycling and sustainability.
UHMWPE Biomaterials Handbook, Third Edition, describes the science, development, properties, and application of ultra-high molecular weight polyethylene (UHMWPE) used in artificial joints. UHMWPE is now the material of choice for joint replacements, and is increasingly being used in fibers for sutures. This book is a one-stop reference for information on this advanced material, covering both introductory topics and the most advanced developments. The third edition adds six new chapters on a range of topics, including the latest in anti-oxidant technologies for stabilizing HXLPE and up-to-date systematic reviews of the clinical literature for HXLPE in hips and knees. The book chronicles the rise and fall of all-metal hip implants, as well as the increased use of ceramic biomaterials and UHMWPE for this application. This book also brings orthopedic researchers and practitioners up to date on the stabilization of UHMWPE with antioxidants, as well as the choices of antioxidant available for practitioners. The book also thoroughly assesses the clinical performance of HXLPE, as well as alternative bearings in knee replacement and UHMWPE articulations with polyether ether ketone (PEEK). Written and edited by the top experts in the field of UHMWPE, this is the only state-of-the-art reference for professionals, researchers, and clinicians working with this material.
Lacquer Chemistry and Applications explores the topic of lacquer, the only natural product polymerized by an enzyme that has been used for a coating material in Asian countries for thousands of years. Although the human-lacquer-culture, including cultivation of the lacquer tree, harvesting, and the use of lacquer sap, has a long history of more than thousand years, there is very little information available on the modern scientific methods to study lacquer chemistry. This book, based on the results of the authors' 30 years of research on lacquer chemistry, offers lacquer researchers a unique reference on the science and applications of this extremely important material.
The second edition of the "Handbook of Plasticizers" thoroughly reviews information currently available in open literature, such as published scientific papers, information from plasticizer manufacturers, and patent literature. Plasticizers are used in so many products that every library should have this reference source of information on plasticizers readily available for its readers. This book should be used in conjunction with "Plasticizer Database," which gives information on the present status and properties of industrial and research plasticizers. The book covers the uses, advantages, and disadvantages of
plasticizers, historical and theoretical background, their effects
on process conditions, and health, safety, and environmental
issues. Contains information from the most recent sources and updated information
This volume consists of 15 chapters and focuses on hazardous chemicals, how they are associated with plastics, and their environmental risks. It includes background information on plastics and additives chemistry, and their observed or potential effects on living organisms as well as the oceanographic aspects of marine debris dispersion. The respective chapters provide insights into the sorption/desorption of chemicals in and out of plastics, the mechanisms and kinetics, but also the scale of the concentrations of chemicals found in marine debris, particularly in microplastics. The occurrence of the various chemicals is analyzed, as well as the distribution profiles of the chemicals in microplastics throughout the world's oceans. The implications of the fact that plastics carry within them several chemicals are discussed in detail. In closing, new research topics that warrant further attention are identified. The book will appeal to all scientists who are already working or interested in starting to work on the topic of marine debris, as well as policymakers, NGOs and the broader informed public.
There is a major lack of fundamental knowledge and understanding on the interaction between a filler and the polymer matrix. When it comes to nanoscale fillers, such as layered silicates, carbon nanotubes, graphene or cellulose nanofibers it is even more important to know accurate structure-property relationships as well as identifying the parameters influencing material behavior. The reason for the lack of knowledge on how to process nanocomposites and why there are so few applications is that several scientific fields are affected and a joint effort of those scientific communities involved is necessary - starting from the filler manufacturing or pre-processing over polymer chemistry to the polymer processing. Within this book for the first time all involved scientific areas are viewed together providing an all-embracing coverage of all stages of polymer clay nanocomposites processing from lab scale to large scale / industry scale - stages from the raw material over manufacturing of polymer clay nanocomposites to characterization and the final products. The reader of the book will gain insight in the
physical/chemical pre-processing of layered silicates and their
incorporation into a polymer matrix using sophisticated
technologies (such as advanced compounding) as well as in real-time
quality control of the nanocomposite production and future
prospects. Finally nanotoxicological and nanosafety aspects will
complete the book. |
You may like...
3D and 4D Printing of Polymer…
Kishor Kumar Sadasivuni, Kalim Deshmukh, …
Paperback
R5,549
Discovery Miles 55 490
Resonance - Long-Lived Waves
Leonard Dobrzynski, Housni Al-Wahsh, …
Paperback
R3,925
Discovery Miles 39 250
Fluoropolymer Applications in the…
Sina Ebnesajjad, Pradip R Khaladkar
Hardcover
R7,078
Discovery Miles 70 780
Sustainable Composites for Aerospace…
Mohammad Jawaid, Mohamed Thariq
Paperback
|