![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Plastics & polymers technology
This book gives an overview of recent developments in the synthesis of macromolecules for water purification applications. The preparation of these polymers from organic and inorganic starting materials is described. Important post-polymerization modifications, introduction of functional groups and production of supramolecular assemblies and nanomaterials are shown. The synthesized materials are presented with their interesting properties and broad areas of applications. A comprehensive discussion about the engineering aspect and the usage in water treatment as well as environmental issues is given. The wide variety of materials and their synthesis techniques will encourage scientists in developing new synthesis routes and materials, whereby engineers will be encouraged to find new possible applications.
Fillers are added to materials such as plastics and composites to reduce costs and to improve and modify the properties of the material. Key sectors using fillers include plastics, rubber, paints, adhesives and paper, with the global fillers market valued at about $35 billion. Recent developments in the field of nanoparticles have led to a range of new fillers, covered for the first time in the 3e of this classic data handbook. "Handbook of Fillers, 3e, " contains information based on the
analysis of over 3,500 research papers, mostly published from 1994
to 2009 (more than half were published after the 2e), technical
data received from over 200 filler manufacturers and equipment
manufacturing, and relevant patent literature.
Wood-plastic composite (WPC) is a non-recyclable composite material lumber or timber made of recycled plastic and wood wastes which has become one of the most dynamic sectors of the plastics industry in this decade. It is used in numerous applications, such as, outdoor deck floors, railings, fences, landscaping timbers, park benches, window and door frames. This book starts with a brief glimpse at the basic structures and properties of WPCs. Aspects such as surface treatment, machinery used and testing types of WPCs are also covered. The following chapters of the book give a view of foam technology, flame retardant properties and colour retardant properties of WPCs. The way morphology affects or controls the physical and mechanical behaviours of the finished materials is discussed. Finally, the authors give an overview of the applications of wood-plastic composites in daily life. The book may serve as a source book for scientists wishing to work in this field.
Polymere sind eine beeindruckend vielseitige Gruppe von makromolekularen Verbindungen und sind aus der heutigen Zeit nicht mehr wegzudenken. Es gibt wenige naturwissenschaftliche Bereiche, in denen so grosse Fortschritte gemacht worden sind wie in der Polymerforschung; zukunftige Moglichkeiten beflugeln eine rasant wachsende Industrie. Da uberall auf der Welt intensiv an Polymeren geforscht und gearbeitet wird, ist es notwendig, in der internationalen Kommunikation keine sprachlichen Missverstandnisse aufkommen zu lassen; dazu will das -Worterbuch Polymerwissenschaften- einen Beitrag leisten, indem es den wichtigsten Wortschatz 12 500 Begriffe in jeder Sprachrichtung: Englisch und Deutsch in klarer ubersichtlicher Weise gegenuber stellt. Eine ausfuhrliche Akronym-Liste der wichtigsten Polymere erganzt dieses handliche und nutzliche Referenzwerk. Ein unentbehrliches Handwerkszeug fur Chemiker, Physiker und Ingenieure in Forschung, Industrie und Lehre. Polymers are an impressively diverse and versatile group of macromolecular compounds contributing significantly to progress and well-being in modern society. In this "era of polymers" the present enormous pace of new developments coupled with an unimaginable potential in polymer science is creating an exciting stimulation of a rapidly growing industry. International communication in the field of polymers requires an efficient use of the according terminology. This means the need of consulting according sources especially dictionaries. This -Polymer Science Dictionary- with some 12,500 terms in both languages, German and English, is an attempt to serving the growing community of chemists, physicists, and engineers in research, academia, and industry involved with polymers. A detailed list of acronyms of the most important polymers adds to this overall handy and useful ready-reference. An indispensable tool for anyone working in the field of polymers."
This monograph is a follow-up material to the first FRRPP book by Gerard Caneba in 2009. It includes additional conceptual results, implementation of the FRRPP process in emulsion media to produce various block copolymers, and other FRRPP-related supplementary topics. Conceptual topics include the application of the quantitative analysis presented in the first FRRPP monograph for the occurrence of the FRRPP process to the polysterene-styrene-ether (PS-S-Ether) and poly(methacrylic acid)-methacrylic acid-water (PMAA-MAA-Water) systems, as well as extensions through unsteady state analysis of the occurrence of flat temperature profiles. Also, the generalization of the quantitative analysis is done to consider molecular weight effects, especially based on changes of the phase envelope to an hourglass type. Topics in implementation of the FRRPP process from pre-emulsions of monomers and the solvent/precipitant are highlighted. Additional FRRPP topics are included in this monograph that pertain to more recent efforts of Gerard Caneba, such as oil spill control, oil dispersant system, and caustic sludge remediation from emulsion-based FRRPP materials, hydrolysis of vinyl acetate-acrylic acid-based copolymers, and other polymer modification studies from FRRPP-based emulsions. "
This book focuses on starch polymers including starch genetics,
biotechnological and chemical modification, nanostructures,
processing, characterization, properties and applications. This
books topic is in a cutting edge and emerging technology area of
biomaterials, nanomaterials and renewable materials, and will
involve international experts in diverse fields from genetic
engineering to applications.
This consolidated reference book addresses the various aspects of nano biomaterials used in ophthalmic drug delivery, including their characterization, interactions with ophthalmic system and applications in treatments of the ophthalmic diseases and disorders. In the last decade, a significant growth in polymer sciences, nanotechnology and biotechnology has resulted in the development of new nano- and bioengineered nano-bio-materials. These are extensively explored as drug delivery carriers as well as for implantable devices and scaffolds. At the interface between nanomaterials and biological systems, the organic and synthetic worlds merge into a new science concerned with the safe use of nanotechnology and nano material design for biological applications. For this field to evolve, there is a need to understand the dynamic forces and molecular components that shape these interactions. While it is impossible to describe with certainty all the bio physicochemical interactions at play at the interface, we are at a point where the pockets of assembled knowledge are providing a conceptual framework to guide this exploration, and review the impact on future product development. The book is intended as a valuable resource for academics and pharmaceutical scientists working in the field of polymers, polymers materials for drug delivery, drug delivery systems and ophthalmic drug delivery systems, in addition to medical and health care professionals in these areas.
Service Life Prediction of Polymeric Materials: Global Perspectives combines developed content derived from topics discussed in the Fourth International Symposium on Service Life Prediction (Key Largo, Florida, December 2006). This critical examination of the existing and alternative methodologies used to assess the service life of polymeric materials presents readers with the advances in accelerated and field exposure testing protocols. Written by established experts in the service life community, this volume introduces advanced methods, including high throughput and combinatorial analyses, models data collection and storage formats. Researchers and engineers involved with materials and polymer science, coatings technologists and automotive materials will find Service Life Prediction of Polymeric Materials: Global Perspectives a useful tool.
Innovative textile materials are used for numerous applications. Understanding the properties of such materials is imperative to ensure proper utilization. Emergent Research on Polymeric and Composite Materials is an essential reference work featuring the latest scholarly research on the synthesis, characterizations, and physico-chemical properties of textile materials. Including coverage on a range of topics such as nanomaterials, ceramics, and clays, this book is ideally designed for researchers, academicians, industries, and students seeking current research on emerging developments and applications of polymeric and composite materials.
Photoreactive thin films have been investigated extensively due to the advances in photonics, and the coupling between photochemistry and nonlinear optics has developed into a new discipline since the 1990s. Light can manipulate the orientation of optically sensitive chromophores containing polymeric thin films, and this phenomena has important applications to the field of opto-electronics and photonics especially in such areas as liquid crystals and optical storage of information.;Scientists from different communities have been working in this area representing such fields as chemistry, chemical engineering, polymer science and optics. The purpose of this books is to provide a comprehensive reference covering the basic fundamentals of the interdisciplinary research as well as the applications in photonics.
The Physics of Polymers presents the elements of this important segment of material science, focusing on concepts above experimental techniques and theoretical methods. Written for graduate students of physics, material science and chemical engineering and for researchers working with polymers in academia and industry, the book introduces and discusses the basic phenomena which lead to the peculiar physical properties of polymeric systems. The revised and expanded Third Edition includes a new chapter dealing with conjugated polymers, explaining the physical basis of the characteristic electro-optic response, and the spectacular electrical conduction properties of conjugated polymers created by doping.
As semiconductor manufacturers implement copper conductors in advanced interconnect schemes, research and development efforts shift toward the selection of an insulator that can take maximum advantage of the lower power and faster signal propagation allowed by copper interconnects. One of the main challenges to integrating a low-dielectric constant (low-kappa) insulator as a replacement for silicon dioxide is the behavior of such materials during the chemical-mechanical planarization (CMP) process used in Damascene patterning. Low-kappa dielectrics tend to be softer and less chemically reactive than silicon dioxide, providing significant challenges to successful removal and planarization of such materials. The focus of this book is to merge the complex CMP models and mechanisms that have evolved in the past decade with recent experimental results with copper and low-kappa CMP to develop a comprehensive mechanism for low- and high-removal-rate processes. The result is a more in-depth look into the fundamental reaction kinetics that alter, selectively consume, and ultimately planarize a multi-material structure during Damascene patterning.
Chemical Vapor Deposition Polymerization - The Growth and
Properties of Parylene Thin Films is intended to be valuable to
both users and researchers of parylene thin films. It should be
particularly useful for those setting up and characterizing their
first research deposition system. It provides a good picture of the
deposition process and equipment, as well as information on
system-to-system variations that is important to consider when
designing a deposition system or making modifications to an
existing one. Also included are methods to characterizae a
deposition system's pumping properties as well as monitor the
deposition process via mass spectrometry. There are many references
that will lead the reader to further information on the topic being
discussed.
The emphasis in degradable polymers has changed since the first edition of this book. Biomedical and agricultural applications remain important topics of scientific and commercial interest in the second edition. However, an increased emphasis on composting as a means of recovering value from wastes has led to a new impetus to understand how plastics degrade in the environment and the implication of this for international standards. Polymers based on renewable resources are also a major topic in this edition but the debate continues about their long-term sustainability and ecological advantages over degradable man-made polymers. Degradable Polymers will be of interest not only to academic and industrial scientists working on packaging, agricultural and medical applications of plastics but also to students of environmental science and legislators concerned with the effects of man-made materials in the environment.
This book covers fundamental principles and numerical methods relevant to the modeling of the injection molding process. As injection molding processing is related to rheology, mechanical and chemical engineering, polymer science and computational methods, and is a rapidly growing field, the book provides a multidisciplinary and comprehensive introduction to the subjects required for an understanding of the complex process. It addresses the up-to-date status of fundamental understanding and simulation technologies, without losing sight of still useful classical approaches. The main chapters of the book are devoted to the currently active fields of flow-induced crystallization and orientation evolution of fiber suspensions, respectively, followed by detailed discussion of their effects on mechanical property, shrinkage and warpage of injection-molded products. The level of the proposed book will be suitable for interested scientists, R&D engineers, application engineers, and graduate students in engineering.
This book contains analysis of reasons that cause products to fail. General methods of product failure evaluation give powerful tools in product improvement. Such methods, discussed in the book, include practical risk analysis, failure mode and effect analysis, preliminary hazard analysis, progressive failure analysis, fault tree analysis, mean time between failures, Wohler curves, finite element analysis, cohesive zone model, crack propagation kinetics, time-temperature collectives, quantitative characterization of fatigue damage, and fracture maps. Methods of failure analysis are critical to for material improvement and they are broadly discussed in this book. Fractography of plastics is relatively a new field which has many commonalities with fractography of metals. Here various aspects of fractography of plastics and metals are compared and contrasted. Fractography application in studies of static and cycling loading of ABS is also discussed. Other methods include SEM, SAXS, FTIR, DSC, DMA, GC/MS, optical microscopy, fatigue behavior, multi-axial stress, residual stress analysis, punch resistance, creep-rupture, impact, oxidative induction time, craze testing, defect analysis, fracture toughness, activation energy of degradation. Many references are given in this book to real products and real cases of their failure. The products discussed include office equipment, automotive compressed fuel gas system, pipes, polymer blends, blow molded parts, layered, cross-ply and continuous fiber composites, printed circuits, electronic packages, hip implants, blown and multi-layered films, construction materials, component housings, brake cups, composite pressure vessels, swampcoolers, electrical cables, plumbing fittings, medical devices, medical packaging, strapping tapes, balloons, marine coatings, thermal switches, pressure relief membranes, pharmaceutical products, window profiles, and bone cements.
This volume explores the latest developments in the area of polymer electrolyte membranes (PEMs) used for high-temperature fuel cells. Featuring contributions from an international array of researchers, it presents a unified viewpoint on the operating principles of fuel cells, various methodologies used for the fabrication of PEMs, and issues related to the chemical and mechanical stabilities of the membranes. Special attention is given to the fabrication of electrospun nanocomposite membranes. The editors have consciously placed an emphasis on developments in the area of fast-growing and promising PEM materials obtained via hygroscopic inorganic fillers, solid proton conductors, heterocyclic solvents, ionic liquids, anhydrous H3PO4 blends, and heteropolyacids. This book is intended for fuel cell researchers and students who are interested in a deeper understanding of the organic-inorganic membranes used in fuel cells, membrane fabrication methodologies, properties and clean energy applications.
A huge variety of biopolymers - such as polysaccharides, polyesters, and polyamides - are naturally produced by microorganisms. These range from viscous solutions to plastics. Their physical properties are dependent on the composition and molecular weight of the polymer. The genetic manipulation of microorganisms opens up an enormous potential for the biotechnological production of biopolymers with tailored properties suitable for high-value medical application such as tissue engineering and drug delivery. Written by expert, internationally renowned scientists, this comprehensive volume describes in detail the use of microorganisms for the production of the most important biopolymers and polymer precursors. The contributors describe in depth the biosynthetic pathways, physical properties, and industrial production processes; and they discuss in detail the genetic and metabolic engineering of microorganisms for biopolymer production. Also highlighted are the applications and potential applications of the biopolymers and microbial biotechnology. Topics include the biochemistry and genetics of biosynthesis of xanthan, alginate, cellulose, cyanophycin, poly(gamma-glutamic acid), levan, hyaluronic acid, organic acids, oligosaccharides and polysaccharides, and polyhydroxyalkanoates. This book is recommended book for all biotechnology and microbiology laboratories.
Fluid Effects in Polymers and Polymeric Composites, written by the late Dr. Y. Jack Weitsman, addresses the wide range of parameters that affect the interaction of fluids with polymers and polymeric composites. The book aims at broadening the scope of available data, mostly limited up to this time to weight-gain recordings of fluid ingress into polymers and composites, to the practical circumstances of fluctuating exposure. Various forms of experimental data are given, in conjunction with theoretical models derived from basic scientific principles, and correlated with severity of exposure conditions and interpreted by means of rationally based theoretical models. The practical implications of the effects of fluids are discussed. The issue of fluid effects on polymers and polymeric composites is of concern to engineers and scientists active in aerospace and naval structures, as an increasing portion of these structures are made of polymeric composites and employ polymeric adhesives as a joining device. While the book is intended for this audience, it will also interest researchers and graduate students interested in the mechanics and materials aspects of this matter.
Proceedings of The 7th World Conference on Biodegradable Polymers
& Plastics organized by the European Degradable Polymer Society
in conjunction with the Bioenvironmental Polymer Society and the
Biodegradale Plastics Society, under the auspices of ICS-UNIDO
(Italy) and INSTM Consortium (Italy) and under the patronage of
IUPAC - International Union of Pure and Applied Chemistry (USA) and
Ministero dell'Ambiente e della Tutela del Territorio (Italy), held
in Tirrenia (Pisa), Italy, on June 4-8, 2002. -Environmentally Degradable Polymeric Materials (EDPs);
The 75th Anniversary Celebration of the "Division of Polymeric Materials: Science and Engineering" of the "American Chemical Society," in 1999 sparked this third edition of "Applied Polymer Science" with emphasis on the developments of the last few years and a serious look at the challenges and expectations of the 21st Century.
Fullerene Polymers and Fullerene Polymer Composites is an in-depth experimental and theoretical account of polymers and composites whose unusual properties, such as, photophysical phenomena, electrical transport, phase transitions and magnetic properties, stem from the incorporation of C60 in the material. Each chapter is written by an internationally renowned expert who has published extensively in this sub-field of fullerene materials. Introductory chapters on the fundamental properties of fullerenes (C60, C70) and photophysical phenomena in fullerenes and polymers are also included.
This series presents critical reviews of the present and future trends in polymer and biopolymer science including chemistry, physical chemistry, physics and materials science. It is addressed to all scientists at universities and in industry who wish to keep abreast of advances in the topics covered. Impact Factor Ranking: Always number one in Polymer Science. |
![]() ![]() You may like...
Progress in Nanoscale Characterization…
Rongming Wang, Chen Wang, …
Hardcover
R4,688
Discovery Miles 46 880
Modelling and Control in Biomedical…
David Dagan Feng, Janan Zaytoon
Paperback
Neural Engineering Techniques for Autism…
Ayman S. El-Baz, Jasjit S. Suri
Paperback
R3,595
Discovery Miles 35 950
|