![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Plastics & polymers technology
Fusion bonding is one of the three methods available for joining composite and dissimilar materials. While the other two, mechanical fastening and adhesion bonding, have been the subject of wide coverage both in textbooks and monographs, fusion bonding is covered here substantially for the first time. Fusion bonding offers a number of advantages over traditional joining techniques and it is anticipated that its use will increase dramatically in the future because of the rise in the use of thermoplastic matrix composites and the growing necessity for recyclability of engineering assemblies. Fusion Bonding of Polymer Composites provides an in-depth understanding of the physical mechanisms involved in the fusion bonding process, covering such topics as:- heat transfer in fusion bonding;- modelling thermal degradation;- consolidation mechanisms;- crystallisation kinetics;- processing-microstructure-property relationship;- full-scale fusion bonding;- fusion bonding of thermosetting composite/thermoplastic composite and metal/thermoplastic joints.The book focuses on one practical case study using the resistance welding process. This example exposes the reader to the development of processing windows for a novel manufacturing process including the use of experimental test programmes and modelling strategies.
Offering nearly 7000 references-3900 more than the first edition-Polymeric Biomaterials, Second Edition is an up-to-the-minute source for plastics and biomedical engineers, polymer scientists, biochemists, molecular biologists, macromolecular chemists, pharmacists, cardiovascular and plastic surgeons, and graduate and medical students in these disciplines. Completely revised and updated, it includes coverage of genetic engineering, synthesis of biodegradable polymers, hydrogels, and mucoadhesive polymers, as well as polymers for dermacosmetic treatments, burn and wound dressings, orthopedic surgery, artificial joints, vascular prostheses, and in blood contacting systems.
This volume represents the Highest Impact Factor of all journals ranked by ISI within Polymer Science. It contains short and concise reports on physics and chemistry of polymers, each written by the world renowned experts. The information remains valid and useful after five or ten years. The electronic version is available free of charge for standing order customers at: springer.com/series/12/
This book introduces the most recent innovations in natural polymer applications in the food, construction, electronics, biomedical, pharmaceutical, and engineering industries. The authors provide perspectives from their respective range of industries covering classification, extraction, modification, and application of natural polymers from various sources in nature. They discuss the techniques used in analysis of natural polymers in various systems incorporating natural polymers as well as their intrinsic properties.
Although, carbon is only one of one hundred plus elements, the polymer science lit erature consists primarily of studies on carbon based polymers. In part, this reflects the varied feedstock sources and in part, the type of bonds and bond forming reactions avail able to form organic polymers that are not available to the inorganic and organometallic chemist. However, recent intense interest in polymers with novel optical, electronic or magnetic properties or polymers that can serve as precursors to ceramic, semiconductor, metallic or superconductor materials has served as a driver for the development of novel synthetic routes and characterization techniques that have launched many new inorganic and organometallic oligomers and polymer systems. The following chapters represent an effort to provide an overview of several new and continuing areas of development in inorganic and organometallic polymer science. This book represents the second in a series of books we have edited on inorganic and organometallic polymer chemistry (1. Transformation of Organo-metallics into Common and Exotic Materials, NATO ASI Series Vol 141. 3. Inorganic and Organometallic Polymers with Special Properties, NATO ASI Series in press). In this series, we attempt to develop, for the reader, an understanding of the breadth, depth and potential of inorganic and organometallic polymer science."
A handbook on polyolefins. This second edition includes new material on the structure, morphology and properties of polyolefin (PO) synthesis. It focuses on synthetic advances, the use of additives, special coverage of PO blends, composites and fibres, and surface treatments. It also addresses the problem of interfacial and superficial phenomena.
This volume contains a series of papers originally presented at the symposium on Water Soluble Polymers: Solution Properties and Applications, sponsored by the Division of Colloids and Surface Chemistry of the American Chemical Society. The symposium took place in Las Vegas City, Nevada on 9 to 11th September, 1997 at the 214th American Chemical Society National Meeting. Recognized experts in their - spective fields were invited to speak. There was a strong attendance from academia, g- ernment, and industrial research centers. The purpose of the symposium was to present and discuss recent developments in the solution properties of water soluble polymers and their applications in aqueous systems. Water soluble polymers find applications in a number of fields of which the following may be worth mentioning: cosmetics, detergent, oral care, industrial water treatment, g- thermal, wastewater treatment, water purification and reuse, pulp and paper production, sugar refining, and many more. Moreover, water soluble polymers play vital role in the oil industry, especially in enhanced oil recovery. Water soluble polymers are also used in ag- culture and controlled release pharmaceutical applications. Therefore, a fundamental kno- edge of solution properties of these polymers is essential for most industrial scientists. An understanding of the basic phenomena involved in the application of these polymers, such as adsorption and interaction with different substrates (i. e. , tooth enamel, hair, reverse - mosis membrane, heat exchanger surfaces, etc. ) is of vital importance in developing high performance formulations for achieving optimum efficiency of the system.
"Covers recent advances in polymer degradation and stabilization. Focuses on the basics of photo- and bio-degradability. Delineates special and general environmental parameters such as solar irradiation, temperature, and agrochemical exposure. Surveys plastic waste disposal strategies such as recycling, incineration, chemical recovery by pyrolysis, and source reduction."
"Compiles nearly 400 fully assigned NMR spectra of approximately 300 polymers and polymer additives, representing all major clases of materials: polyolefins, styrenics, acrylates, methacrylates, vinyl polymers, elastomers, polyethers, polyesters, polymides, silicones, cellulosics, polyurethanes, plasticizers, and antioxidants."
Hydrophilic polyurethanes have the unique property of being able to absorb or otherwise manage moisture-and this makes them valuable in medical and a number of other important commercial applications. This new book provides a concise, unified presentation of hydrophilic polyurethanes technology and applications. All important topics from chemistry, analysis, processing and quality systems to product development and applications are covered clearly and systematically. The text is well illustrated by more than 45 flowcharts and diagrams and supplemented by more than 20 data tables. A special feature of this new book is its inclusion of case studies of recent development of commercially valuable products using hydrophilic polyurethanes. These case studies illustrate how these unique materials can be tailored to specific application needs. The information in this new book will be useful to all those involved in the research, development and applications of polymers, biomaterials, and other materials whose utility requires the special properties of hydrophilic polyurethanes. To receive your copy promptly, please order now. Information on ordering - by mail, fax, telephone or the publisher's secure website - follows the complete table of contents on the reverse. The Author Tim Thomson is the director of Main Street Technologies, an independent research organization specializing in the development of advanced medical materials and devices. Previously he was technical manager of the Hypol Group, W. R. Grace & Co. He is recognized as an authority on hydrophilic polyurethanes and their use in medical device and other applications. He has an M.S. in Physical Chemistry from Michigan TechnologicalUniversity and has been awarded six patents in synthetic chemistry and process control.
Volume 3 of the Handbook of Colloid and Interface Science is a survey into the applications of colloids in a variety of fields, based on theories presented in Volumes 1 and 2. The Handbook provides a complete understanding of how colloids and interfaces can be applied in materials science, chemical engineering, and colloidal science. It is ideally suited as reference work for research scientists, universities, and industries.
This text provides the basic history, molecular structure and intrinsic properties, practical applications and future developments of polyethylene production and marketing - including recycling systems and metallocene technology. It describes commercial processing techniques used to convert raw polyethylene to finished products, emphasizing special properties and end-use applications.
Volume three deals specifically with the role of monomers and resins in radiation curing. The nature of the backbone of ologomers leads to the ultimate physical or chemical properties of the UV-cured material. This chapter also covers aspects of the chemistry of these compounds in relation to their end uses.
In an area as vast and important as rheology, it is essential that the experimentalist understands the underlying theories and shortcomings of the measurement technique used, that they are aware of the likely microstructure of the fluid under study and that from this they can appreciate how the fluid and the measuring system interact with each other. This major handbook, written by an international group of experts in the range of rheological techniques, presents the state of the art in rheological measurement, and concentrates on the techniques and underlying physical principles. The second edition, fully revised and updated to include new techniques is invaluable to polymer and materials scientists, engineers and technologists, and anyone else making rheological measurements on materials whether they be polymeric, biological, slurries, food or other complex fluids.
Nanostructure is in the focus of science, and advanced scattering methods are significantly contributing to the solution of related questions. This volume includes 19 contributions to the field of polymers and scattering, collected on the occasion of Wilhelm Ruland 's 80th anniversary in October 2005. The contributions from leading scientists cover a wide range of topics concerning -Advanced polymer materials -Studies of nanostructure: From bone to nanotubes -Modern data evaluation methods for isotropic and anisotropic scattering data. The book is an excellent source of information with respect to recent developments and future applications related to this important field that extends from the engineering of advanced materials to the development of novel evaluation methods.
The Handbook of Polymer Testing: Physical Methods provides virtually currently used techniques for measuring and testing the physical properties of polymers. A concise but detailed technical guide to the physical testing methods of synthetic polymers in plastics, rubbers, cellular materials, textiles, coated fabrics, and composites, the book analyses a wide array of physical parameters and features complete coverage of mechanical, optical, and electrical, and thermal properties. Topics of interest include sample preparation, time-dependent properties, coated fabrics, weathering, permeability, and nondestructive testing.
Plastics and rubber materials, or polymers, are increasingly the first choice of engineers when reliable, cost-effective performance and safety are essential. The volume of polymers used in the Western economy now exceeds that of metals, which requires today's engineering students to have a thorough grounding in the properties and applications of polymeric materials. The first chapters of Engineering with Polymers explain what polymers are, how they behave, and how articles are made from them. The authors then show how the standard engineering techniques of stress analysis, structures, fluid mechanics, heat transfer and design can be adopted or adapted to cover plastics and rubber materials. The book ends with chapters detailing interactions between processing and properties, and a description of a variety of approaches to designing plastics products, from practical advice to the use or further development of theoretical principles, backed up by examples and case studies. The book is aimed at mechanical engineering students and design engineers in industry and also at materials' and chemical engineers.
FROM THE FOREWORD
Modern power systems have undergone tremendous progress due to the implementation of new technologies. With these advancements, the standards for insulation materials must be enhanced and revitalized. Accelerating the Discovery of New Dielectric Properties in Polymer Insulation is a pivotal source of academic research on emerging trends in the properties, applications, and developments of polymer dielectrics. Highlighting a range of relevant perspectives on topics such as high thermal conductivity, power storage, and wind energy, this book is ideally designed for students, professionals, academics, and practitioners interested in the optimization of power system infrastructures.
Handbook of Biodegradable Polymers, the seventh volume in the Drug Delivery and Targeting book series, provides a source manual for synthetic procedures, properties and applications of bioerodible polymers. The authors describe widely available materials such as polyactides, collagen and gelatin, as well as polymers of emerging importance, such as the genetically-engineered and elastin-based polymers which are either proprietary or in early stages of development. Section I addresses synthetic absorbable polymers, and Section 2 profiles natural, semi-synthetic and biosynthetic polymers. Section 3 discusses the surface characterization of degradable polymers, the modeling of biodegradation and non-medical polymers. This book is ideal for researchers from academia and industry as well as chemists, pharmacists and physicians who deal with biopolymers, drug delivery and targeting, bioengineering and implantable devices.
Polyurethanes in Biomedical Applications studies the use of polyurethanes in implanted medical devices. This analysis describes the concepts of polymer science, the manufacture of polyurethanes, and the biological responses to implant polyurethanes, reflecting the developments in biomaterials science and the interdisciplinary nature of bioengineering.
Describes almost 4000 plastics additives available to industry. Data represent selections from manufactures' descriptions made at no cost to, nor influence from, makers or distributors of these materials. A list of suppliers and a trade name index are included.
Polymeric products are used widely in the construction industry, because they offer a range of desirable performance properties not available from traditional materials. Development of these products continues in a number of major research and development programmes within the construction materials sector, aimed at improving the performance, durability and applicational properties of these materials. It seems certain that their use will increase as their overall performance is developed and as the industry becomes more familiar with the techniques required to apply these materials and the benefits they offer. The purpose of this book is to familiarise the reader with the range of thermosetting polymeric materials available for construction applications, and to provide sound information on the properties and applications of these important materials. Professional engineers involved in the specification, application and testing of these materials will find this book a compact, authoritative and comprehensive source of information on these materials. Chemists and technologists involved in developing new or improved formulations will find in this book much to inform their work, particularly in the important area of applicational properties.
This book presents select proceedings of the APA Bioforum International e-Conference on Polymeric Biomaterials & Bioengineering (APA Bioforum 2021). This book mainly focuses on developing innovative polymeric materials for bioengineering and human healthcare systems. This book helps in the understanding of molecular architecture and its role in governing physical characteristics which is extremely useful to understand the interactions with the biosystem. The topics covered include polymer synthesis, biopolymers, biomaterials, smart materials, nanotechnology, tissue engineering, wound care system, hydrogel, targeted drug delivery, water decontamination and purification. The book will be a valuable reference for beginners, researchers and professionals interested in polymeric materials and biomaterials. |
![]() ![]() You may like...
|