![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Plastics & polymers technology
This work examines the science and technology used in the manufacture of acrylic fibre for both mass-produced commodity products and premium products. It elucidates the chemistry and fibre production techniques of speciality acrylics such as flame-retardant, water-reversible bicomponent, producer dyed and others. Capacity figures for developing countries are published here.;This work is intended for: polymer, fibre and textile scientists, chemists and engineers; physical and dye chemists; textile company managers; and upper-level undergraduate and graduate students in these disciplines.
Comprised of carefully curated chapters previously published by Prof. Ruckenstein and colleagues, this two-volume set offers a comprehensive overview of functional and modified polymeric materials focusing on concentrated emulsion polymerization, conducting polymers, living ionic polymerization, degradable polymers, polymer membranes, and polymer-inorganic hybrid materials. The first volume presents functional and modified polymer materials prepared by concentrated emulsion polymerization approaches. The second covers functional and modified polymer materials prepared mainly through solution polymerization and surface polymerization.
This book summarizes recent advances in the fabrication methods, properties, and applications of various ceramic-filled polymer matrix composites. Surface-modification methods and chemical functionalization of the ceramic fillers are explored in detail, and the outstanding thermal and mechanical properties of polymer-ceramic composites, the modeling of some of their thermal and mechanical parameters, and their major potential applications are discussed along with detailed examples. Aimed at researchers, industry professionals, and advanced students working in materials science and engineering, this work offering a review of a vast number of references in the polymer-ceramic field, this work helps readers easily advance their research and understanding of the field.
Explores the nature of relaxation phenomena in polymers on the basis of time-temperature equivalence. Its role in the physical and mechanical behavior of polymers materials and fundamentals of thermoplastics processing are discussed. Four appendixes detail thermo-mechanical methods to study relaxation in polymers, structure of both amorphous and semi-crystalline polymers, and unified approach to describe deformation of polymeric materials.
Extrusion is by far the most important and the oldest processing and shaping method for thermoplastic polymers. This process concerns almost all synthetic polymers, as well as elastomers or food materials. Single-screw extrusion is mainly used nowadays to manufacture finished goods or semi-finished products. More than 90 million tons of thermoplastics are therefore processed every year. Twin-screw extrusion may be divided into two systems: contra-rotating systems used within the context of PVC extrusion, for the manufacture of pipes or profiles; and co-rotating systems experiencing nowadays a very significant development, because of their significant adaptability and flexibility, which enables the manufacture of specific materials (polymer alloys, thermoplastic elastomers, filled polymers, nanocomposites). Extrusion is carried out by passing molten polymer through a tool called die that will give the product its final shape (films and sheets, rolled products, and electric cables). Thanks to the design of dies, we obtain at the output a product with controlled dimensions, uniform speeds and homogeneous temperatures. The book will discuss the same production types, but only in the case of coextrusion flows, i.e. multilayer stratified products. First of all, we will present in this book the physics of the mechanisms at stake, then propose more or less complex models in order to describe these mechanisms and then go forward in the interpretation of results and the control of condition flows.
This title gives an overview of composites and biocomposites. It discusses the history of CaPO4/ /polymer biocomposites and hybrid biomaterials, as well as analyzing the latest developments in the field. It also covers bioactivity and biodegradation of CaPO4-based biomaterials.
Transport Properties of Polymeric Membranes is an edited collection of papers that covers, in depth, many of the recent technical research accomplishments in transport characteristics through polymers and their applications. Using the transport through polymer membranes method leads to high separation efficiency, low running costs, and simple operating procedures compared to conventional separation methods. This book provides grounding in fundamentals and applications to give you all the information you need on using this method. This book discusses the different types of polymer, their blends, composites, nanocomposites and their applications in the field of liquid, gas and vapor transport. Some topics of note include modern trends and applications of polymer nanocomposites in solvent, vapor and gas transport; fundamentals and measurement techniques for gas and vapor transport in polymers; and transport properties of hydrogels. This handpicked selection of topics, and the combined expertise of contributors from global industry, academia, government and private research organizations, make this book an outstanding reference for anyone involved in the field of polymer membranes.
Designing Successful Products with Plastics: Fundamentals of Plastic Part Design provides expert insight into design considerations required to bring a concept product or part through design and ready-for-production. The book shows how integrating four key choices-materials, processes, tooling and design-in every design decision allows the designer to fully vet and optimize the design. Rather than focusing on design rules and engineering equations used during product development, the emphasis of the book is on what the designer needs to consider during the early conceptual visualization stages, and in the detailed stages of the design process. This approach will bridge the gap between the industrial designer, tasked with the 'big picture' product design and use, and the part designer, tasked with the detailed plastic part design for manufacture. Useful to both experienced and novice designers, this book brings valuable design process information through specific examples, enabling designers and engineers in the plastics industry to effectively use the available technical information to successfully design and manufacture new products.
My heart sank when I was approached by Dr Hastings and by Professor Briggs (Senior Editor of Materials Science and Technology and Series Editor of Polymer Science and Technology Series at Chapman & Hall, respectively) to edit a book with the provisional title Handbook of Poly propylene. My reluctance was due to the fact that my former book [1] along with that of Moore [2], issued in the meantime, seemed to cover the information demand on polypropylene and related systems. Encour aged, however, by some colleagues (the new generation of scientists and engineers needs a good reference book with easy information retrieval, and the development with metallocene catalysts deserves a new update!), I started on this venture. Having some experience with polypropylene systems and being aware of the current literature, it was easy to settle the titles for the book chapters and also to select and approach the most suitable potential contributors. Fortunately, many of my first-choice authors accepted the invitation to contribute. Like all editors of multi-author volumes, I recognize that obtaining contributors follows an S-type curve of asymptotic saturation when the number of willing contributors is plotted as a function of time. The saturation point is, however, never reached and as a consequence, Dear Reader, you will also find some topics of some relevance which are not explicitly treated in this book (but, believe me, I have considered them).
Polyurethane Polymers: Blends and Interpenetrating Networks deals with almost all aspects of blends and IPNs formed by polyurethane, including the thermal, mechanical, morphological, and viscoelastic properties of each blend presented in the book. In addition, major applications related to these blends and IPNs are mentioned.
Polyaniline Blends, Composites, and Nanocomposites summarizes recent advances in polyaniline-based blends, composites and nanocomposites. Polyaniline (PANI) is a conducting polymer with a range of potential applications, particularly in electronics and packaging. The book covers the preparation, characterization and application of PANI-based composites, including the structure-property relationship and modification of PANI. It offers an in-depth update on the major findings and observations in the field of polyaniline-based blends, composites and nanocomposites, with contributions from leading researchers in industry, academia, government and private research institutions worldwide. The book is an application-oriented, practical guide to the development and application of this polymeric material. The book includes discussion of reinforcement of polyaniline via addition of carbon-based materials, blends with thermoplastics, thermosets, natural and synthetic rubber, and polyaniline based composites and nanocomposites, with an emphasis on enabling polymer scientists and engineers to more effectively utilize this material in new applications.
This work explores the use of composite nanotechnology for thin coatings on various substrates. It compiles recent advances in nanocomposite coatings for experienced researchers and provides background information for those new to the field. The book not only explains the synthesis of bulk nanocomposite materials, it describes their application in areas such as the automotive and packaging industries. It explains how nanocomposite coatings provide a gas barrier to the substrate foil or laminate and how the coatings are used to provide properties such as anti-scratch and anti-corrosion.
Advancements in polymer nanocomposite foams have led to their application in a variety of fields, such as automotive, packaging, and insulation. Employing nanocomposites in foam formation enhances their property profiles, enabling a broader range of uses, from conventional to advanced applications. Since many factors affect the generation of nanostructured foams, a thorough understanding of structure-property relationships in foams is important. Polymer Nanocomposite Foams presents developments in various aspects of nanocomposite foams, providing information on using composite nanotechnology for making functional foams to serve a variety of applications. Featuring contributions from experts in the field, this book reviews synthesis and processing techniques for preparing poly(methyl methacrylate) nanocomposite foams and discusses strategies for toughening polymer foams. It summarizes the effects of adding nanoclay on polypropylene foaming behavior and describes routes to starch foams for improved performance. The books also reviews progress in achieving high-performance lightweight polymer nanocomposite foams while keeping desired mechanical properties, examines hybrid polyurethane nanocomposite foams, and covers polymer-clay nanocomposite production. The final chapters present recent advances in the field of carbon nanotube/polymer nanocomposite aerogels and related materials as well as a review of the nanocomposite foams generated from high-performance thermoplastics. Summing up the most recent research developments in the area of polymer nanocomposite foams, this book provides background information for readers new to the field and serves as a reference text for researchers.
This, the first Wiley publication of a Polymer Network Group Review, presents articles resulting from the 13th Polymer Network Group conference that took place in the Netherlands in September 1996. The scope of the conference was "Chemical versus Physical Networks: Formation and Control of Properties." The resulting contributions provided new insight into recent trends in liquid crystalline and anisotropic networks, nanostructures and new developments in network theory and modeling. The papers published in this volume have been divided into 7 sections: Thermoreversible and Biopolymer Gels Formation of Covalent Networks Liquid Crystalline Networks Characterisation of Networks Critical Gels Heterogeneous Gels Swelling of Networks
Polylactide Foams: Fundamentals, Manufacturing, and Applications provides an introduction to the fundamental science behind plastic foams, polylactic acid) and polylactide foaming, giving designers tactics to replace traditional resins with sustainable and biodegradable materials. The book then delves deeper into the technology behind PLA foaming, such as PLA/gas mixture characteristics, solubility, interfacial tension behaviors and crystallization kinetics of various types of PLA and their compounds. The foaming behaviors and mechanisms of various types of PLA and PLA compounds are extensively analyzed and discussed through different manufacturing technologies, namely extrusion foaming, foam injection molding and bead foaming. Interest in Poly(lactic acid) and PLA foams is extremely high - particularly as a potential replacement for styrenic resins - and the price of PLA resin is lower than ever before. This biopolymer has significant potential to improve the sustainability of the plastics industry. Polylactide Foams have a range of potential applications, such as in construction, packaging, insulation, biomedical scaffolds, and others. However, processing and performance of PLA are not at the same level as other non-biodegradable resins.
Algae Based Polymers, Blends, and Composites: Chemistry, Biotechnology and Material Sciences offers considerable detail on the origin of algae, extraction of useful metabolites and major compounds from algal bio-mass, and the production and future prospects of sustainable polymers derived from algae, blends of algae, and algae based composites. Characterization methods and processing techniques for algae-based polymers and composites are discussed in detail, enabling researchers to apply the latest techniques to their own work. The conversion of bio-mass into high value chemicals, energy, and materials has ample financial and ecological importance, particularly in the era of declining petroleum reserves and global warming. Algae are an important source of biomass since they flourish rapidly and can be cultivated almost everywhere. At present the majority of naturally produced algal biomass is an unused resource and normally is left to decompose. Similarly, the use of this enormous underexploited biomass is mainly limited to food consumption and as bio-fertilizer. However, there is an opportunity here for materials scientists to explore its potential as a feedstock for the production of sustainable materials.
Crystallization in Multiphase Polymer Systems is the first book that explains in depth the crystallization behavior of multiphase polymer systems. Polymeric structures are more complex in nature than other material structures due to their significant structural disorder. Most of the polymers used today are semicrystalline, and the subject of crystallization is still one of the major issues relating to the performance of semicrystalline polymers in the modern polymer industry. The study of the crystallization processes, crystalline morphologies and other phase transitions is of great significance for the understanding the structure-property relationships of these systems. Crystallization in block copolymers, miscible blends, immiscible blends, and polymer composites and nanocomposites is thoroughly discussed and represents the core coverage of this book. The book critically analyzes the kinetics of nucleation and growth process of the crystalline phases in multi-component polymer systems in different length scales, from macro to nanoscale. Various experimental techniques used for the characterization of polymer crystallization process are discussed. Written by experts in the field of polymer crystallization, this book is a unique source and enables professionals and students to understand crystallization behavior in multiphase polymer systems such as block copolymers, polymer blends, composites and nanocomposites.
Cost Management in Plastics Processing: Strategies, Targets, Techniques, and Tools, Fourth Edition, makes readers think about current practices and how to go forward with effective cost management. This is a practical workbook that provides a structured approach to reducing costs in plastics processing for all the major plastics shaping processes (moulding, extrusion, forming) as well as elsewhere in the company (e.g., in factory services and non-manufacturing areas). Competition in all manufacturing sectors is increasing, and there is continuous pressure to drive costs down and to increase cost management. Good cost management improves profits and margins, improves management control and opens the door to becoming a world-class company. The approach throughout this book looks rigorously at where costs are incurred and proposes projects and targets for cost reduction. This book is designed to provide a well-structured map broken down into simple tasks and achievable goals. This book offers a structured approach to the techniques of cost management, from how costs are calculated by accountants, to the effective use of machines and labor, to the minimization of waste. It begins by looking at traditional methods of accounting and costing and whether these are helpful or accurate for project management. Practical examples of cost management in plastics processing are included, together with many useful flow charts and diagrams to illustrate the points under discussion.
The policy adopted in Volume 1 of this series of including a relatively small number of topics for detailed review has been continued here. The techniques selected have received considerable attention in recent years. F or this reason and because of the significance of the characterisation data, further coverage of 13C nuclear magnetic resonance spectroscopy and small angle neutron scattering is given in the first two chapters. In Chapter I a large part of the review describes the determination of monomer sequence distributions and configurational sequences in copolymers formed from more than one polymerisable monomer. The review on neutron scattering (Chapter 2) is directed towards the determination of the chain conformation in semi-crystaIIine polymers, which has provided important results for the interpretation of chain folding and morphology in crystaIIisable polymers. Laser Raman spectroscopy has also been used for morphological studies, and this application together with a description of the theoretical and experimental aspects of the technique is given in Chapter 3. X-ray photoelectron spectroscopy because of its extreme sensitivity to surface characteristics has provided information on polymeric solids that could not be obtained by other techniques. The principles and practice of this ESCA technique, including its use for simple elemental analysis, structural elucidation and depth profiling, are described in Chapter 4. The final two chapters are mainly concerned with the chain conformation of polymers in dilute solution. Ultrasonic techniques (Chapter 5) show pmmise for observing the dynamics of conformational changes.
Seaweed Polysaccharides: Isolation, Biological, and Biomedical Applications examines the isolation and characterization of algal biopolymers, including a range of new biological and biomedical applications. In recent years, significant developments have been made in algae-based polymers (commonly called polysaccharides), and in biomedical applications such as drug delivery, wound dressings, and tissue engineering. Demand for algae-based polymers is increasing and represent a potential-very inexpensive-resource for these applications. The structure and chemical modification of algal polymers are covered, as well as the biological properties of these materials - including antithrombic, anti-inflammatory, anticoagulant, and antiviral aspects. Toxicity of algal biopolymers is also covered. Finally, the book introduces and explains real world applications of algal-based biopolymers in biomedical applications, including tissue engineering, drug delivery, and biosensors. This is the first book to cover the extraction techniques, biomedical applications, and the economic perspective of seaweed polysaccharides. It is an essential text for researchers and industry professionals looking to work with this renewable resource.
A practical handbook rather than merely a chemistry reference, Szycher's Handbook of Polyurethanes, Second Edition offers an easy-to-follow compilation of crucial new information on polyurethane technology, which is irreplaceable in a wide range of applications. This new edition of a bestseller is an invaluable reference for technologists, marketers, suppliers, and academicians who require cutting-edge, commercially valuable data on the most advanced uses for polyurethane, one of the most important and complex specialty polymers. internationally recognized expert Dr. Michael Szycher updates his bestselling industry "bible" With seven entirely new chapters and five that are revised and updated, this book summarizes vital contents from U.S. patent literature-one of the most comprehensive sources of up-to-date technical information. These patents illustrate the most useful technology discovered by corporations, universities, and independent inventors. Because of the wealth of information they contain, this handbook features many full-text patents, which are carefully selected to best illustrate the complex principles involved in polyurethane chemistry and technology. Features of this landmark reference include: Hundreds of practical formulations Discussion of the polyurethane history, key terms, and commercial importance An in-depth survey of patent literature Useful stoichiometric calculations The latest "green" chemistry applications A complete assessment of medical-grade polyurethane technology Not biased toward any one supplier's expertise, this special reference uses a simplified language and layout and provides extensive study questions after each chapter. It presents rich technical and historical descriptions of all major polyurethanes and updated sections on medical and biological applications. These features help readers better understand developmental, chemical, application, and commercial aspects of the subject.
Carbon Nanotube-Reinforced Polymers: From Nanoscale to Macroscale addresses the advances in nanotechnology that have led to the development of a new class of composite materials known as CNT-reinforced polymers. The low density and high aspect ratio, together with their exceptional mechanical, electrical and thermal properties, render carbon nanotubes as a good reinforcing agent for composites. In addition, these simulation and modeling techniques play a significant role in characterizing their properties and understanding their mechanical behavior, and are thus discussed and demonstrated in this comprehensive book that presents the state-of-the-art research in the field of modeling, characterization and processing. The book separates the theoretical studies on the mechanical properties of CNTs and their composites into atomistic modeling and continuum mechanics-based approaches, including both analytical and numerical ones, along with multi-scale modeling techniques. Different efforts have been done in this field to address the mechanical behavior of isolated CNTs and their composites by numerous researchers, signaling that this area of study is ongoing.
In this important volume, the structures and functions of these advanced polymer and composite systems are evaluated with respect to improved or novel performance, and the potential implications of those developments for the future of polymer-based composites and multifunctional materials are discussed. It focuses exclusively on the latest research related to polymer and composite materials, especially new trends in frontal polymerization and copolymerization synthesis, functionalization of polymers, physical properties, and hybrid systems. Several chapters are devoted to composites and nanocomposites.
Management of Marine Plastic Debris gives a thorough and detailed presentation of the global problem of marine plastics debris, covering every aspect of its management from tracking, collecting, treating and commercial exploitation for handing this anthropogenic waste. The book is a unique, essential source of information on current and future technologies aimed at reducing the impact of plastics waste in the oceans. This is a practical book designed to enable engineers to tackle this problem-both in stopping plastics from getting into the ocean in the first place, as well as providing viable options for the reuse and recycling of plastics debris once it has been recovered. The book is essential reading not only for materials scientists and engineers, but also other scientists involved in this area seeking to know more about the impact of marine plastics debris on the environment, the mechanisms by which plastics degrade in water and potential solutions. While much research has been undertaken into the different approaches to the increasing problem of plastics marine debris, this is the first book to present, evaluate and compare all of the available techniques and practices, and then make suggestions for future developments. The book also includes a detailed discussion of the regulatory environment, including international conventions and standards and national policies.
The purpose of this book is to present in a monographic and systematised form a review of all the literature devoted to polyurethane-based polymeric sorbents in separation chemistry. The primary types of sorbents dealt with are polyurethane foams and open-pore polyurethanes. The structure of the monograph follows this dichotomy. A book of this nature should stimulate thinking and incite its reader to consult the original literature. It will, however, not make such a consultation superfluous. A fair amount of the results described in this monograph constitute the main activity of investigation which took place in the authors laboratories during the past decade. |
You may like...
Modern Aspects of Electrochemistry 39
Constantinos G. Vayenas, Ralph E. White
Hardcover
R2,817
Discovery Miles 28 170
Mathematics for Physical Chemistry
Robert G. Mortimer, S. M. Blinder
Paperback
R1,402
Discovery Miles 14 020
Advanced Functional Materials, Volume 2…
Biplab Sanyal, Olle Eriksson
Hardcover
New Approaches in Biomedical…
Katrin Kneipp, Ricardo Aroca, …
Hardcover
R3,257
Discovery Miles 32 570
Chemical Reactivity - Volume 1: Theories…
Savas Kaya, Laszlo Von Szentpaly, …
Paperback
R4,005
Discovery Miles 40 050
Foams - Structure and Dynamics
Isabelle Cantat, Sylvie Cohen-Addad, …
Hardcover
R2,348
Discovery Miles 23 480
|