![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Plastics & polymers technology
This book focuses on food, non-food, and industrial packaging applications of polymers, blends, nanostructured materials, macro, micro and nanocomposites, and renewable and biodegradable materials. It details physical, thermal, and barrier properties as well as sustainability, recycling, and regulatory issues. The book emphasizes interdisciplinary research on processing, morphology, structure, and properties as well as applications in packaging of food and industrial products. It is useful for chemists, physicists, materials scientists, food technologists, and engineers.
This volume highlights the latest developments and trends in advanced polyblends and their structures. It presents the developments of advanced polyblends and respective tools to characterize and predict the material properties and behavior. The book provides important original and theoretical experimental results that use non-routine methodologies often unfamiliar to many readers. Furthermore chapters on novel applications of more familiar experimental techniques and analyses of composite problems are included, which indicate the need for the new experimental approaches that are presented. Technical and technological development demands the creation of new materials that are stronger, more reliable, and more durable-materials with new properties. Up-to-date projects in creation of new materials go along the way of nanotechnology. With contributions from experts from both the industry and academia, this book presents the latest developments in the identified areas. This book incorporates appropriate case studies, explanatory notes, and schematics for more clarity and better understanding. The book is designed as a textbook for postgraduate students, as a teaching support for the faculty, as a reference book for early research career beginners, and as a reference book for the scientific community at large for understanding the significance of modern materials and chemical engineering. This book will be useful for chemists, chemical engineers, technologists, and students interested in advanced nano-polymers with complex behavior and their applications This new book: * Gives an up-to-date and thorough exposition of the present state of the art of polyblends and composites * Familiarizes the reader with new aspects of the techniques used in the examination of polymers, including chemical, physicochemical, and purely physical methods of examination * Describes the types of techniques now available to the polymer chemist and technician and discusses their capabilities, limitations, and applications * Provides a balance between materials science and mechanics aspects, basic and applied research, and high-technology and high-volume (low-cost) composite development
Photoresponsive polymers that can be manipulated with specific frequency of light Designing of polymers for vibration damping Smart manipulations of hydrophic and superhydrophobic polymers Biopolymers including hydrogel for smart application, drug delivery etc. Smart paints Self-healing and shape memory polymers Holography for data storage Phase change polymers and solid polymer electrolyte for thermal and electrochemical energy Molecularly imprinting polymers for sub ppm sensing and removal of undesired materials Smart textile covering the concept of advanced textiles
This books studies syntax of NPIs and their interaction with sentential negatives in Hindi. It outlines the clause structure of Hindi and locates the syntactic position of sentential negatives as well as constituent negatives within the structure. It is argued that sentential negative in Hindi negation marker heads its own maximal projection, NegP, which is immediately dominated by TP. In addition to locating the position of negation markers in the clause structure, it outlines the distribution of negative polarity items (NPIs) in Hindi and the structural constraints on their licensing by sentential negative. The book argues that an NPI in Hindi is licensed overtly in the course of derivation by a c-commanding negative marker. The bulk of the evidence presented in this book argues against previous theoretical accounts that claim that NPI licensing involves covert syntactic operations such as LF movement or reconstruction. With respect to the classification of NPIs , this book also shows the existence of two different types of NPIs in Hindi; namely, strong NPIs and weak NPIs. Strong NPIs require a clause mate c-commanding negative licensor, whereas weak NPIs are quantifiers and are similar to free choice 'any' in English that are interpreted as NPIs in the presence of a c-commanding negative licensor.
This reference guide brings together a wide range of critical data on the effect of creep and other long term effects on plastics and elastomers, enabling engineers to make optimal material choices and design decisions. The data are supported by explanations of how to make use of the data in real world engineering contexts and provides the long-term properties data that designers need to create a product that will stand the test of time. This new edition represents a full update of the data, removing all obsolete data, adding new data, and updating the list of plastics manufacturers. Additional plastics have also been included for polyesters, polyamides and others where available, including polyolefins, elastomers and fluoropolymers. Entirely new sections on biodegradable polymers and thermosets have been added to the book. The level of data included - along with the large number of graphs and tables for easy comparison - saves readers the need to contact suppliers, and the selection guide has been fully updated, giving assistance on the questions which engineers should be asking when specifying materials for any given application.
Scientists are conducting active research in different fields of engineering, science and technology by adopting the Green Chemistry Principles and methodologies to devise new processes, with a view to help protect and ultimately save the environment from further anthropogenic interruptions and damage. With this in mind, the book provides an up-to-date, coherently written and objectively presented set of chapters from eminent international researchers who are actively involved in academic and technological research in the synthesis, (bio)degradation, testing and applications of biodegradable polymers and biopolymers. This pool of the latest ideas, recent research and technological progress, together with a high level of thinking with a comprehensive perspective, makes the emerging field of biodegradable polymer science and engineering (or bio-based polymers) linked to environmental sustainability, the essence of this key publication. The handbook consists of chapters written and contributed by international experts from academia who are world leaders in research and technology in sustainability and biopolymer and biodegradable polymer synthesis, characterisation, testing and use. The book highlights the following areas: green polymers; biopolymers and bionanocomposites; biodegradable and injectable polymers; biodegradable polyesters; synthesis and physical properties; discovery and characterization of biopolymers; degradable bioelastomers, lactic acid based biodegradable polymers; enzymatic degradation of biodegradable polymers; biodegradation of polymers in the composting environment; recent development in biodegradable polymers; research and applications and biodegradable foams. The book is aimed at technical, research-orientated and marketing people in industry, universities and institutions. It will also be of value to the worldwide public interested in sustainability issues and biopolymer development as well as others interested in the practical means that are being used to reduce the environmental impacts of chemical processes and products, to further eco-efficiency, and to advance the utilization of renewable resources for a bio-based production and supplier chain. Readers will gain a comprehensive and consolidated overview of the immense potential and ongoing research in bio-based and biodegradable polymer science, engineering and technology to make the world greener.
"Handbook of Thermoplastic Elastomers, Second Edition" presents a comprehensive working knowledge of thermoplastic elastomers (TPEs), providing an essential introduction for those learning the basics, but also detailed engineering data and best practice guidance for those already involved in polymerization, processing, and part manufacture. TPEs use short, cost-effective production cycles, with reduced energy consumption compared to other polymers, and are used in a range of industries including automotive, medical, construction and many more. This handbook provides all the practical information engineers need to successfully utilize this material group in their products, as well as the required knowledge to thoroughly ground themselves in the fundamental chemistry of TPEs. The data tables included in this book assist engineers and scientists in both selecting and processing the materials for a given product or application. In the second edition of this handbook, all chapters have been
reviewed and updated. New polymers and applications have been
added- particularly in the growing automotive and medical fields -
and changes in chemistry and processing technology are
covered.
This text provides an important structural analysis of polymer solutions and melts, using fractal analysis. The book covers the theoretical fundamentals of macromolecules fractal analysis. It then goes on to discuss the fractal physics of polymer solutions and the fractal physics of melts. The intended audience of the book includes specialists in chemistry and physics of polymer synthesis and those in the field of polymers and polymer composites processing.
Among the materials found in Nature's many diverse living organisms or produced by human industry, those made from polymers are dominant. In Nature, they are not only dominant, but they are, as well, uniquely necessary to life. Conformations: Connecting the Chemical Structures and Material Behaviors of Polymers explores how the detailed chemical structures of polymers can be characterized, how their microstructural-dependent conformational preferences can be evaluated, and how these conformational preferences can be connected to the behaviors and properties of their materials. The authors examine the connections between the microstructures of polymers and the rich variety of physical properties they evidence. Detailed polymer architectures, including the molecular bonding and geometries of backbone and side-chain groups, monomer stereo- and regiosequences, comonomer sequences, and branching, are explicitly considered in the analysis of the conformational characteristics of polymers. This valuable reference provides practicing materials engineers as well as polymer and materials science students a means of understanding the differences in behaviors and properties of materials made from chemically distinct polymers. This knowledge can assist the reader design polymers with chemical structures that lead to their desired material behaviors and properties.
This new volume presents leading-edge research in the rapidly changing and evolving field of polymer science as well as on chemical processing. The topics in the book reflect the diversity of research advances in the production and application of modern polymeric materials and related areas, focusing on the preparation, characterization, and applications of polymers. Also covered are various manufacturing techniques. The book will help to fill the gap between theory and practice in industry.
Smart polymers are polymers that respond to different stimuli or changes in the environment. "Smart Polymers and their Applications "reviews the types, synthesis, properties, and applications of smart polymers. Chapters in part one focus on types of polymers, including temperature-, pH-, photo-, and enzyme-responsive polymers. Shape memory polymers, smart polymer hydrogels, and self-healing polymer systems are also explored. Part two highlights applications of smart polymers, including smart instructive polymer substrates for tissue engineering; smart polymer nanocarriers for drug delivery; the use of smart polymers in medical devices for minimally invasive surgery, diagnosis, and other applications; and smart polymers for bioseparation and other biotechnology applications. Further chapters discuss the use of smart polymers for textile and packaging applications, and for optical data storage. "Smart Polymers and their Applications" is a technical resource
for chemists, chemical engineers, mechanical engineers, and other
professionals in the polymer industry; manufacturers in such
sectors as medical, automotive, and aerospace engineering; and
academic researchers in polymer science.
"Advances in Filament Yarn Spinning of Textiles and Polymers" reviews the different types of spinning techniques for synthetic polymer-based fibers, and issues such as their effect on fiber properties, including melt, dry, wet, and gel spinning. Synthetic polymer-based fibers are used in a great variety of consumer and industrial textile applications ranging from clothing to home furnishings to surgical procedures. This book explores how a wide array of spinning techniques can be applied in the textile industry. Part one considers the fundamental structure and properties of fibers that determine their behavior during spinning. The book then discusses developments in technologies for manufacturing synthetic polymer films to produce different fibers with specialized properties. Part two focuses on spinning techniques, including the benefits and limitations of melt spinning and the use of gel spinning to produce high-strength and high-elastic fibers. These chapters focus specifically on developments in bi-component, bi-constituent, and electro-spinning, in particular the fabrication of nanocomposite fibers. The final chapters review integrated composite spinning of yarns and the principles of wet and dry spinning. This collection is an important reference for a wide range of
industrial textile technologists, including spinners, fabric and
garment manufacturers, and students of textile technology. It is
also of great interest for polymer scientists.
Polymeric and hybrid nanoparticles have received increased
scientific interest in terms of basic research as well as
commercial applications, promising a variety of uses for
nanostructures in fields including bionanotechnology and medicine.
Condensing the relevant research into a comprehensive reference,
Polymer and Polymer-Hybrid Nanoparticles: From Synthesis to
Biomedical Applications covers an array of topics from synthetic
procedures and macromolecular design to possible biomedical
applications of nanoparticles and materials based on original and
unique polymers.
The final chapter addresses biological applications of polymeric nanoparticles, including delivery of low-molecular-weight drugs, macromolecular drugs, imaging and diagnostics, and photodynamic therapy. Summarizing important developments in the field, the authors condense relevant research into a comprehensive resource.
While the prevalence of plastics and elastomers in medical devices is now quite well known, there is less information available covering the use of medical devices and the applications of polymers beyond medical devices, such as in hydrogels, biopolymers and silicones beyond enhancement applications, and few books in which these are combined into a single reference. This book is a comprehensive reference source, bringing together
a number of key medical polymer topics in one place for a broad
audience of engineers and scientists, especially those currently
developing new medical devices or seeking more information about
current and future applications. In addition to a broad range of
applications, the book also covers clinical outcomes and
complications arising from the use of the polymers in the body,
giving engineers a vital insight into the real world implications
of the devices they re creating. Regulatory issues are also covered
in detail. The book also presents the latest developments on the
use of polymers in medicine and development of nano-scale
devices.
This reference guide brings together a wide range of essential data on the effect of long term thermal exposure on plastics and elastomers, enabling engineers to make optimal material choices and design decisions. The data is supported by explanations of how to make use of the data in real-world engineering contexts. High heat environments are common in automotive, oil and gas, household appliances, coatings, space and aeronautics and many more end uses. As a result, thermal stability data are critically important to engineers designing parts particularly that replace metals, work that is common today as they look for ways to reduce weight. The data tables in this book enable engineers and scientists to select the right materials for a given product or application across a wide range of sectors. Several polymer classes are covered, including polyolefins,
polyamides, polyesters, elastomers, fluoropolymers, biodegradable
plastics and more, saving readers the need to contact suppliers.
The book also includes introductory sections to provide background
on plastic/polymer chemistry and formulation and plastic testing
methods, providing the knowledge required to make best use of the
data.
This book bridges the technology and business aspects of
thermosets, providing a practical guide designed for engineers
working in real-world industrial settings. The author explores the
criteria for material selection, provides information on material
properties for each family of thermosets, and discusses the various
processing options for each material type. He explains advantages
and disadvantages of using thermosets and composites in comparison
to competing materials and assesses cost aspects, enabling the
reader to balance out technical and economic constraints when
choosing a thermoset and processing technology for a given
application. This second edition contains a new section on
composites solutions for practical problems, gathering information
on trends contributing to the breakthrough of composites in various
sectors. Other new sections on specific crosslinking processes,
processing trends, machinery and equipment manufacturers,
applications, bio-sourced thermosets and natural fibers, and
recycling of thermosets and composites are included. Case studies
are provided, illustrating many design and production challenges.
Furthermore, new market data and information about health and
safety will be added. All data is fully updated throughout, with
pricing in USD and EUR, and both ASTM (North American) and European
standards. "Thermosets and Thermoset Composites, Second Edition" is
the only book that gives in-depth coverage of a wide range of
subject matters and markets, yet in brevity and concision in a
single volume, avoiding the need of consulting a series of other
specialized books. By providing the knowledge necessary for
selecting a fabrication process, thermoset material and methods for
determining the all important cost of thermoset parts this new
edition is an invaluable decision-making aid and reference work for
practitioners in a field with growing importance.
This book covers the theory of the strength of laminated and reinforced structures made of polymer materials with regard to the changeability of physico-chemical properties is examined. It presents an experimental-theoretical method on the definition of physico-mechanical properties of polymers composite materials and polymerized bundles made of fibers with emphasis on the changes of physico-chemical properties of the materials. With mathematical strictness, the experimental and theoretical studies presented here will aid in the development of reliable methods and new practices of analyzing structures with the influence of chemically aggressive liquids and gases and in the creation of specific production structures that will withstand corrosive environments.
This new book explores liberating designs that the age of plastic has brought to kitchen items, toys, furniture, appliances, jewelry, and more. Over 350 items are illustrated in full color. They include a concise description and a value in today's marketplace. The passion for collecting plastic has continued to grow. What was once seen as commonplace is now looked at with nostalgia and an eye for its design. Besides, collecting plastics is fun. The colors, shapes, and design delight the eye and will add to one's personal appearance or to the decor of the home. The information and photographs on these pages will be a welcome addition to the collector's library.
This book provides an abundance of information about the science and application of nanoparticles in the creation of nanocomposite materials, covering the synthesis, properties, and applications of nanomaterials. Written by experts in their fields, the chapters provide important updates on a number of aspects of nanomaterials and their practical applications to create new materials, particularly polymer composite materials. The book is an outgrowth of notes the authors have compiled and used to teach advanced courses on polymers for many years. Useful for engineers and researchers, the book also functions as a highly practical and useful ancillary text for advanced-level students studying nanomaterials and polymer science.
Concerns about global warming and the depletion of oil reserves
have led to significant research into more sustainable composite
materials made from natural materials. Recently, research has
focussed on the development of nanoscale reinforcements for this
new group of composites, significantly improving and extending
their range of desirable properties. Environmentally friendly
polymer nanocomposites summarises this wealth of research and its
practical implications.
International law is often manipulated in the debate about humanitarian intervention. The Liberian case provides an opportunity to challenge the UN and The Economic Community of West African States' (ECOWAS') new approach. ECOWAS and the UN's justifications for moving away from the current norms are flawed. No enlightened person would disagree with the values of peace, democracy, human rights, and economic development. This book, however, explores whether these goals be pursued within the current framework or outside it.
Through a balanced combination of theory and experiments, this book provides a detailed overview of the main and most up-to-date advances in the area of polymeric materials. Because the subject is essentially interdisciplinary and brings together scientists and engineers with different educational backgrounds, the book offers a research-oriented exposition of the fundamentals as well. The book is based on the editors' and authors' extensive experience in research, development, and education in the field of materials science, and especially polymer testing, polymer diagnostics, and failure analysis. A comprehensive coverage of the methods of polymer testing is provided along with the results of the authors' work on deformation and fracture behavior of polymers. This book will be useful to faculty as well as advanced-level students in materials science, materials technology, plastic technology, mechanical engineering, process engineering, and chemical engineering.
With chapters by the editors and other experts in the field of polymer science, this book covers a broad selection of important research advances in the field, including updates on enzymatic destruction and photoelectric characteristics, studies on the changes in the polymer molecular mass during hydrolysis and a new type of bioadditive for motor fuel, and an exploration of the interrelation of viscoelastic and electromagnetic properties of densely cross-linked polymers. Also included are chapters that discuss the problems of mechanics of textile performance, new aspects of polymeric nanofibers, a mathematical model of nanofragment cross-linked polymers, and much more. |
![]() ![]() You may like...
Enzymes - Mechanisms, Dynamics and…
Christo Christov, Tatyana Karabencheva-Christova
Hardcover
One, No One, One Hundred Thousand - The…
Samanta Antonella Mariani, Luca Cassetta
Hardcover
High Resolution Optical Satellite…
Ian Dowman, Karsten Jacobsen, …
Hardcover
R2,284
Discovery Miles 22 840
Nitride Semiconductor Light-Emitting…
JianJang Huang, Hao-Chung Kuo, …
Paperback
R5,124
Discovery Miles 51 240
Structured Light for Optical…
Mohammad D. Alamri, David L Andrews, …
Paperback
R4,629
Discovery Miles 46 290
Creating Positive Classroom Climate - 30…
Maureen Connolly, Jonathan Ryan Davis
Paperback
R914
Discovery Miles 9 140
A C/OS-III for the Renesas RX62N
J Labrosse Jean, Kovalski Fabiano
Hardcover
R1,927
Discovery Miles 19 270
|