![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Industrial chemistry & manufacturing technologies > Industrial chemistry > Plastics & polymers technology
Classical plasticity theory of metals is independent of the hydrostatic pressure. However if the metal contains voids or pores or if the structure is composed of cells, this classical assumption is no more valid and the influence of the hydrostatic pressure must be incorporated in the constitutive description. Looking at the microlevel, metal plasticity is connected with the uniform planes of atoms organized with long-range order. Planes may slip past each other along their close-packed directions. The result is a permanent change of shape within the crystal and plastic deformation. The presence of dislocations increases the likelihood of planes slipping. Nowadays, the theory of pressure sensitive plasticity is successfully applied to many other important classes of materials (polymers, concrete, bones etc.) even if the phenomena on the micro-level are different to classical plasticity of metals. The theoretical background of this phenomenological approach based on observations on the macro-level is described in detail in this monograph and applied to a wide range of different important materials in the last part of this book.
Polymerie materials have been replacing other conventional materials like metals, glass and wood in a number of applications. The use of various types of fillers incorporated into the polymer has become quite common as a means of reducing cost and to impart certain desirable mechanieal, thermal, electrieal and magnetic properties to the polymers. Oue to the energy crisis and high priees of petrochemieals, there has been a greater demand to use more and more fillers to cheapen the polymerie materials while maintaining and/or improving their properties. The advantages that filled polymer systems have to offer are normally offset to some extent by the increased complexity in the rheological behavior that is introduced by the inclusion of the fillers. Usually when the use of fillers is considered, a compromise has to be made between the improved mechanieal properties in the solid state, the increased difficulty in melt processing, the problem of achieving uniform dispersion of the filler in the polymer matrix and the economics of the process due to the added step of compounding. It has been recognized that addition of filler to the polymer brings a change in processing behavior. The presence of the filler increases the melt viscosity leading to increases in the pressure drop across the die but gives rise to less die swell due to decreased melt elasticity.
Polymers and composites are widely used for a range of applications in engineering and technology. Selecting the correct material which is fit for purpose is a critical decision faced by engineers and scientists who do not necessarily have an in-depth knowledge of the chemistry or physics of polymers. This text book provides a practical insight into the factors which influence the performance of a polymer or composite allowing informed selections to be made. It is the result of thirty years of teaching polymer science and technology to engineers and scientists and provides a solid foundation from which more advanced study may be developed. The book complements introductory courses on polymers and composites, but also contains specialist material on the chemistry and physics of polymers appropriate for scientists seeking a general knowledge of polymer science. The production of articles from thermoplastics and thermoset resins is considered with respect to the vital issue of fabrication method and a broad appreciation of the use and application of polymers is provided by considering polymers as adhesives, in medical applications and in the fabrication of semiconductor circuits. Also included are the important topics of adhesion, fatigue, viscoelasticity, basic composite design, theoretical description of polymers, polymer synthesis and characterization.
Over the last three decades many fundamental problems relating to the chemical reactions of polymers have arisen. In this book three distinguished authors present for the first time a comprehensive, theoretical and experimental analysis of macromolecular reactions, summarising advances in the field. Designed as a guide for academics and for polymer chemists and physicists in industry, this will also be an invaluable textbook for post-graduates and students as it details the peculiarities of macromolecular reactions, the quantitative investigation of reaction kinetics, product structure and processes of chemical modification. The authors are all widely regarded as worldwide experts in this field.
This Springer Laboratory volume introduces the reader to advanced techniques for the separation and fractionation of polyolefins. It includes detailed information on experimental protocols and procedures, addressing the experimental background of different polyolefin fractionation techniques in great detail. The book summarizes important applications in all major fractionation methods with emphasis on multidimensional analytical approaches. It comprises the most powerful modern techniques, such as high temperature size exclusion chromatography (HT-SEC) for molar mass analysis, temperature rising elution fractionation (TREF) and crystallization analysis fractionation (CRYSTAF) for the analysis of chemical composition and branching, high temperature two-dimensional liquid chromatography (HT-2D-LC), solvent and temperature gradient interaction chromatography (SGIC and TGIC) and crystallization elution fractionation (CEF). Beginners as well as experienced chromatographers will benefit from this concise introduction to a great variety in instrumentation, separation procedures and applications. With detailed descriptions of experimental approaches for the analysis of complex polyolefins, the readers are offered a toolbox to solve simple as well as sophisticated separation tasks. The book starts with an introduction into the molecular complexity of polyolefins - the most widely used synthetic polymers with rapidly growing production capacities. It systematically discusses crystallization based fractionation techniques including TREF, CRYSTAF and CEF and column chromatographic techniques for molar mass, chemical composition and microstructure, as well as the combination of different fractionations in multidimensional experimental setups. This book also includes basic information on the application of high-temperature field-flow fractionation.
Hybrid Polymer Composite Materials: Properties and Characterisation presents the latest on these composite materials that can best be described as materials that are comprised of synthetic polymers and biological/inorganic/organic derived constituents. The combination of unique properties that emerge as a consequence of the particular arrangement and interactions between the different constituents provides immense opportunities for advanced material technologies. This series of four volumes brings an interdisciplinary effort to accomplish a more detailed understanding of the interplay between synthesis, structure, characterization, processing, applications, and performance of these advanced materials, with this volume focusing on their properties and characterization.
Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist.
This book extensively reviews Polypropylene (PP), the second most widely produced thermoplastic material, having been produced for over 60 years. Its synthesis, processing and application are still accompanied by vigorous R&D developments because the properties of PP are at the borderline between those of commodity and engineering thermoplastics. Readers are introduced to various tacticities and polymorphs of PP, and their effects on structural properties. Further, the book addresses the control of optical properties using nucleants, provides strategies for overcoming the limited cold/impact resistance of PP, examines in detail the effects of recycling, and presents guidelines for the property modification of PPs through foaming, filling and reinforcing with respect to target applications. Special attention is paid to descriptions and models of properties as a function of morphological variables. Last but not least, the book suggests potential practical applications of PP-based systems, especially in the packaging, appliances, building/construction, textile and automotive sectors. Each chapter, written by internationally respected scientists, reflects the current state-of-art in the respective field and offers a vital source of information for students, researchers and engineers interested in the morphology, properties, testing and modeling of PP and PP-based systems. The content is indispensable to the appropriate application of PPs and related composites.
Highlighting dynamic developments in polymer synthesis, this book focuses on the chemical techniques to synthesize and characterize biomedically relevant polymers and macromolecules. Aids researchers developing polymers and materials for biomedical applications Describes biopolymers from a synthetic perspective, which other similar books do not do Covers areas that include: cationically-charged macromolecules, pseudo-peptides, polydrugs and prodrugs, controlled radical polymerization, self-assembly, polycondensates, and polymers for surface modification
This book presents a systematic study of the synthesis of optically active polymers, discussing in detail the syntheses of three different types of optically active polymers from helical polymers, dendronized polymers and other types of polymeric compounds. It also explains the syntheses of optically active azoaromatic and carbazole-containing azoaromatic polymers and copolymers; optically active benzodithiophene; and optically active porphyrin derivatives. The final chapter discusses different properties of optically active polymers such as nonlinear optical properties, chiroptical properties, vapochromic behaviour, absorption and emission properties, fabrication and photochromic properties. The intrinsic details of various properties of optically active polymers will offer a valuable resource for researchers and industry personnel actively engaged in application-oriented investigations.
The various techniques used to analyze the microstructures of
polymers are presented in this book. High resolution and solid
state techniques are described, and applications to both synthetic
and biological polymers are discussed in detail.
PVC Degradation and Stabilization, Fourth Edition, includes new developments in PVC production, new stabilization methods and mechanisms, new approaches to plasticization, methods of waste reprocessing, accelerated degradation due to electric breakdown, and much more. The book contains all the information necessary for the successful design of stabilization formulas in any PVC-based product. Other topics covered include degradation by thermal energy, UV, gamma and other forms of radiation, chemical degradation, and more. Analytical methods for studying degradative and stabilization processes aid readers in establishing a system for verifying results of stabilization with different stabilizing systems. Many new topics included in this edition are of particular interest today. These comprise new developments in PVC production yielding range of new grades, new stabilization methods and mechanisms (e.g. synergistic mixtures containing hydrotalcites and their synthetic equivalents, beta-diketones, functionalized fillers, Shiff bases), new approaches to plasticization, methods of waste reprocessing (life cycle assessment, reformulation, biodegradable materials, and energy recovery), accelerated degradation due to electric breakdown, and many more
This book covers fundamental principles and numerical methods relevant to the modeling of the injection molding process. As injection molding processing is related to rheology, mechanical and chemical engineering, polymer science and computational methods, and is a rapidly growing field, the book provides a multidisciplinary and comprehensive introduction to the subjects required for an understanding of the complex process. It addresses the up-to-date status of fundamental understanding and simulation technologies, without losing sight of still useful classical approaches. The main chapters of the book are devoted to the currently active fields of flow-induced crystallization and orientation evolution of fiber suspensions, respectively, followed by detailed discussion of their effects on mechanical property, shrinkage and warpage of injection-molded products. The level of the proposed book will be suitable for interested scientists, R&D engineers, application engineers, and graduate students in engineering.
This monograph is a follow-up material to the first FRRPP book by Gerard Caneba in 2009. It includes additional conceptual results, implementation of the FRRPP process in emulsion media to produce various block copolymers, and other FRRPP-related supplementary topics. Conceptual topics include the application of the quantitative analysis presented in the first FRRPP monograph for the occurrence of the FRRPP process to the polysterene-styrene-ether (PS-S-Ether) and poly(methacrylic acid)-methacrylic acid-water (PMAA-MAA-Water) systems, as well as extensions through unsteady state analysis of the occurrence of flat temperature profiles. Also, the generalization of the quantitative analysis is done to consider molecular weight effects, especially based on changes of the phase envelope to an hourglass type. Topics in implementation of the FRRPP process from pre-emulsions of monomers and the solvent/precipitant are highlighted. Additional FRRPP topics are included in this monograph that pertain to more recent efforts of Gerard Caneba, such as oil spill control, oil dispersant system, and caustic sludge remediation from emulsion-based FRRPP materials, hydrolysis of vinyl acetate-acrylic acid-based copolymers, and other polymer modification studies from FRRPP-based emulsions.
Sustainable polymers play an indispensable role in the emergence of green materials, and the 21st century is an era of sustainable polymeric materials. Sustainable polymer-based materials have attracted considerable interest because of the energy crisis and ecological concerns as well as the potential to substitute certain petroleum-derived materials. This book covers the fundamentals of sustainable polymers and presents guidelines in a logical and clear manner for students and researchers to follow. It is a milestone that will help accelerate the progress and advancement in the field of sustainable polymers. The text explores the structure and chemistry of various sustainable polymers, such as cellulose, hemicellulose, lignin, chitosan, starch, guar gum, pectin, and protein, for the possible development of green sustainable materials.
This book, which is a result of a coordinated effort by 22 researchers from five different countries, addresses the methods of determining the local and global mechanical properties of a variety of materials: metals, plastics, rubber, and ceramics. The first chapter treats nanoindentation techniques comprehensively. Chapter 2 concerns polymer surface properties using nanoindentation techniques. Chapter 3 deals with the wear properties of dental composites. Chapter 4 compares the global and local properties of a lead-free solder. Chapter 5 discusses the methods of determining plastic zones at the crack tip. Fatigue resistance of a synthetic polymer under different loading conditions is dealt with in Chapter 6. Chapter 7 is a review of the methods used to measure fatigue crack growth resistance. Chapter 8 treats bulk and surface properties of coated materials, and the final chapter presents a method for determining elastic constants using a resonance technique. All in all, its depth of coverage makes it a must-have for research scholars, graduate students, and teachers.
The book covers the topic of geopolymers, in particular it highlights the relationship between structural differences as a result of variations during the geopolymer synthesis and its physical and chemical properties. In particular, the book describes the optimization of the thermal properties of geopolymers by adding micro-structural modifiers such as fibres and/or fillers into the geopolymer matrix. The range of fibres and fillers used in geopolymers, their impact on the microstructure and thermal properties is described in great detail. The book content will appeal to researchers, scientists, or engineers who are interested in geopolymer science and technology and its industrial applications.
Molecularly Imprinted Polymers, by Karsten Haupt, Ana V. Linares, Marc Bompart und Bernadette Tse Sum Bui.- Physical Forms of MIPs, byAndrea Biffis, Gita Dvorakova und Aude Falcimaigne-Cordin.- Micro and Nanofabrication of Molecularly Imprinted Polymers, by Marc Bompart, Karsten Haupt und Cedric Ayela.- Immuno-Like Assays and Biomimetic Microchips, by M. C. Moreno-Bondi, M. E. Benito-Pena, J. L. Urraca und G. Orellana.- Chemosensors Based on Molecularly Imprinted Polymers, by Subramanian Suriyanarayanan, Piotr J. Cywinski, Artur J. Moro, Gerhard J. Mohr und Wlodzimierz Kutner.- Chromatography, Solid-Phase Extraction, and Capillary Electrochromatography with MIPs, by Blanka Toth und George Horvai.- Microgels and Nanogels with Catalytic Activity, by M. Resmini, K. Flavin und D. Carboni."
Biosynthetic Polymers for Medical Applications provides the latest information on biopolymers, the polymers that have been produced from living organisms and are biodegradable in nature. These advanced materials are becoming increasingly important for medical applications due to their favorable properties, such as degradability and biocompatibility. This important book provides readers with a thorough review of the fundamentals of biosynthetic polymers and their applications. Part One covers the fundamentals of biosynthetic polymers for medical applications, while Part Two explores biosynthetic polymer coatings and surface modification. Subsequent sections discuss biosynthetic polymers for tissue engineering applications and how to conduct polymers for medical applications.
Polypeptide-Polymer Conjugates, by Henning Menzel Chemical Strategies for the Synthesis of Protein-Polymer Conjugates, by Bjoern Jung and Patrick Theato Glycopolymer Conjugates, by Ahmed M. Eissa and Neil R. Cameron DNA-Polymer Conjugates: From Synthesis, Through Complex Formation and Self-assembly to Applications, by Dawid Kedracki, Ilyes Safir, Nidhi Gour, Kien Xuan Ngo and Corinne Vebert-Nardin Synthesis of Terpene-Based Polymers, by Junpeng Zhao and Helmut Schlaad
"Electroactivity in Polymeric Materials"provides an in-depth viewof
the theory of electroactivity and exploresexactly how and
whyvarious electroactive phenomena occur. The book explains the
theory behind electroactive bending (including
ion-polymer-metal-composites -IPMCs), dielectric elastomers,
electroactive contraction, andelectroactive contraction-expansion
cycles. The book also balances theory with applications - how
electroactivity can be used - drawing inspiration from the manmade
mechanical world and the natural world around us.
Chitin, Chitosan and Derivatives for Wound Healing and Tissue Engineering, by Antonio Francesko and Tzanko Tzanov Polyhydroxyalkanoates (PHA) and their Applications, by Guo-Qiang Chen.- Enzymatic Polymer Functionalisation: Advances in Laccase and Peroxidase Derived Lignocellulose Functional Polymers, by Gibson S. Nyanhongo, Tukayi Kudanga, Endry Nugroho Prasetyo and Georg M. Guebitz.- Lipases in Polymer Chemistry, by Bahar Yeniad, Hemantkumar Naik and Andreas Heise.- Enzymes for the Biofunctionalization of Poly(Ethylene Terephthalate), by Wolfgang Zimmermann and Susan Billig.- Biology of Human Hair: Know Your Hair to Control It, by Rita Araujo, Margarida Fernandes, Artur Cavaco-Paulo and Andreia Gomes.- Recombinamers: Combining Molecular Complexity with Diverse Bioactivities for Advanced Biomedical and Biotechnological Applications, by Jose Carlos Rodriguez-Cabello, Maria Pierna, Alicia Fernandez-Colino, Carmen Garcia-Arevalo and Francisco Javier Arias.- Biomimetic Materials for Medical Application Through Enzymatic Modification, by Piergiorgio Gentile, Valeria Chiono, Chiara Tonda-Turo, Susanna Sartori and Gianluca Ciardelli.- Supramolecular Polymers Based on Cyclodextrins for Drug and Gene Carrier Delivery, by Jia Jing Li, Feng Zhao and Jun Li.- Engineering Liposomes and Nanoparticles for Biological Targeting, by Rasmus I. Jolck, Lise N. Feldborg, Simon Andersen, S. Moein Moghimi and Thomas L. Andresen.-"
|
You may like...
Recycling of Polyethylene Terephthalate…
Sabu Thomas, Ajay Vasudeo Rane, …
Hardcover
R3,977
Discovery Miles 39 770
Sustainable Composites for Aerospace…
Mohammad Jawaid, Mohamed Thariq
Paperback
3D and 4D Printing of Polymer…
Kishor Kumar Sadasivuni, Kalim Deshmukh, …
Paperback
R5,549
Discovery Miles 55 490
Fluoropolymer Applications in the…
Sina Ebnesajjad, Pradip R Khaladkar
Hardcover
R7,078
Discovery Miles 70 780
Green Sustainable Process for Chemical…
Dr. Inamuddin, Tariq Altalhi, …
Paperback
R4,551
Discovery Miles 45 510
Manufacturing Techniques for Polymer…
Suresh G. Advani, Kuang-Ting Hsiao
Hardcover
R4,673
Discovery Miles 46 730
|