![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Environmental engineering & technology > Pollution control
Das vollstandig uberarbeitete Gesamtwerk "Rietschel Raumklimatechnik" ist die Fortfuhrung des erstmals 1893 erschienenen RIETSCHEL "Leitfaden zum Berechnen und Entwerfen von Luftungs- und Heizungsanlagen." Die Erweiterung und Vertiefung der Grundlagen und verstarkte Ausrichtung auf eine integrierte Behandlung des Gebaudes und seiner klimatechnischen Anlagen sind wichtiges Merkmal. Band 3 behandelt die Aufgaben der Raumheiztechnik, deren Anforderungen und Beurteilungskriterien. Eine Ubersicht uber Heizsysteme und ihren Aufbau behandelt detailliert Gross- und Kleinraumheizgerate, Raumheizflachen, Warmeerzeugungsanlagen, Warmeverteilsysteme sowie die Gebrauchswarmwasserbereitung inklusive ihrer Berechnungsmethoden."
This book presents insights in green techniques used in conventional and advanced machining. It consists of various experimental case studies conducted by the authors on green machining of difficult-to-machine materials, polymer and ceramic materials. Effects of green techniques / processes on machining properties like material removal rate, surface quality, geometric accuracy, productivity, and environment while machining various materials are reported.
This book advances the use of biodiesel-more environmentally friendly than traditional fossil fuels-by showing how it can be synthesized at a lower cost, with greater efficiency and as a more pure and stable product. It presents methods based on fluorescence spectroscopy, which are less time-consuming than the traditional Rancimat analysis for monitoring stability, and are therefore less prone to allowing oxidative decay in the biofuel. Biodiesel exploits a variety of raw materials, from freshly harvested cottonseed to recycled cooking oil. These are cheap to produce and generate fuel lower in polluting sulphur and aromatic compounds than its petroleum-based equivalent. Beginning by addressing different protocols for synthesis based on fatty acids, methyl and ethyl esters, it then describes chemical analyses essential to establishing the purity of the biodiesel. It highlights in detail the use of multifunctional and synthetic antioxidants, and investigates the impact of synthetic chalcones and their derivatives on the oxidative stability of biodiesel. The author goes on to explain how to ameliorate various influences - UV irradiation and metal contaminants for example - which increase the hazards of oxidation, such as degradation and instability. New pre-treatment procedures performed using ultrasonic energies, thermostatic bath and vortex stirring are not only more environmentally friendly, but cut down on the time-consuming process of determining metal content, and allow for the use of more environmentally friendly aqueous reagents. The book investigates and demonstrates these techniques on the basis of real-world results. Further, it suggests the practical uses of byproducts of biodiesel production, for example, using glycerol as a source of energy and high valuable chemicals. These useful techniques aid any researcher exploring the production process of biodiesel and its stabilization and characteristics.
This book summarizes science and technology of a new generation of high-energy andinsensitive explosives. The objective is to provide professionals with comprehensiveinformation on the synthesis and the physicochemical and detonation properties ofthe explosives. Potential technologies applicable for treatment of contaminated wastestreams from manufacturing facilities and environmental matrices are also be included.This book provides the reader an insight into the depth and breadth of theoreticaland empirical models and experimental techniques currently being developed in thefield of energetic materials. It presents the latest research by DoD engineers andscientists, and some of DoD's academic and industrial researcher partners. The topicsexplored and the simulations developed or modified for the purposes of energetics mayfind application in other closely related fields, such as the pharmaceutical industry.One of the key features of the book is the treatment of wastewaters generated duringmanufacturing of these energetic materials.
This book explains how the specifics of Stiff Extrusion influence on the metallurgical properties of Extruded Briquettes. The practical experience of the utilization of Stiff Extrusion in metallurgy obtained so far suggests that this technology can substitute (partially or by 100%) environmentally unfriendly sintering. The authors start reviewing the existing briquetting technologies, providing the reader later on with the specifics of stiff extrusion briquetting technology. Other aspects treated are the applications of extruded briquettes on blast furnace and for the production of manganese ferro alloys. The authors suggest stuff extrusion briquetting technology for direct reduction iron production and list several alternative unconventional applications.
This book presents a range of nanocatalysts, together with their primary environmental applications and use in chemical production processes. In addition, it describes the nanomaterials used for catalysts and details their performance. The book introduces readers to the fundamentals and applications of nanocatalysis, synthesis, characterization, modification and application. Further topics include: landfill organic pollutant photodegradation; magnetic photocatalysis; synergistic effects on hydrogenated TiO2; and photoinduced fusion of gold-semiconductor nanoparticles. A detailed explanation of the chemistry of nanostructures and the ability to control materials at the nano-scale rounds out the coverage. Given the central importance of research in nanotechnology and nanoscience for the development of new catalysts, the book offers a valuable source of information for researchers and academics alike. It will also benefit industrial engineers and production managers who wish to understand the environmental impact of nanocatalysts.
This book provides extensive information on high-temperature H2S removal for integrated gasification combined cycle (IGCC) coarse gas, together with briefly introductions to the concept of clean coal technology, and to the mechanism and kinetics of hot coal gas desulfurizers. Readers will gain a comprehensive understanding of available control methods for high-temperature H2S removal in IGCC coarse gas and how the technology has been adopted by industry. As such, the book offers a unique resource for researchers and engineers in the fields of energy science and technology, environmental science and technology, and chemical engineering.
The rapid growth of industries has resulted in the generation of high volume of solid and liquid waste. Today, there is a need of Clean and Green technology for the sustainable waste management. Biochemical and Environmental Bioprocessing: Challenges and Developments explore the State-of-art green technologies to manage the waste and to recover value added products. Microbes play an important role in the bioremediation. Bioprocess engineering an interdisciplinary connects the Science and Technology. The bioconversion and bioremediation is essentially required for the management of various hazardous substances in the environment. This book will give an intensive knowledge on the application of Biochemical and Bioprocess technologies for the eco-friendly management of pollution. This book serves as a fundamental to the students, researchers, academicians and Engineers working in the area of Environmental Bioremediation and in the exploration of various bioproducts from waste. Features Reviews various biological methods for the treatment of effluents from Industries by using biomass and biopolymers. Highlights the applications of various bioreactors like Anaerobic Sequential Batch Reactor, Continuously stirred anaerobic digester, Up-flow anaerobic sludge blanket reactor, Fluidized and expanded bed reactors. Presents the cultivation of algae in Open Pond, Closed loop System, and Photo-bioreactors for bioenergy production. Discusses the intensified and integrated biorefinery approach by Microwave Irradiation, Pyrolysis, Acoustic cavitation, Hydrodynamic cavitation, Electron beam irradiation, High pressure Autoclave reactor, Steam explosion and photochemical oxidation. Outlines the usage of microbial fuel cell (MFC) for the production bioelectricity generation in different modules Tubular MFC, Stacked MFC, Separate electrode modules Cutting edge research of synthesis of biogenic nanoparticles and Pigments by green route for the health care and environment management.
This book introduces the theory and applications of nanometer photocatalysis, and it briefly presents the concept of photocatalysts, photocatalytic reaction mechanisms and kinetics, and photocatalytic reactor design. In addition, the use of photocatalysis in the control of flue-gas pollutants is discussed in detail. The book also describes how a photocatalytic reactor is designed and implemented to evaluate the photocatalytic oxidation capacity of different photocatalysts on elemental mercury in a simulated flue gas. After that, the effect of photocatalysts on the SO2, NOx and Hg removal in the flue gas is studied. Photocatalytic cleaning technology can be applied not only in gas pollutant cleaning at power plants, but also in wastewater purification. Readers gain a comprehensive understanding of possible mercury emission control methods and the industrial applications of these technologies.
This book discusses the bioremediation of both solid and liquid waste, including regional solutions for India as well as globally relevant applications. The topics covered include pollutant reduction through composting, solutions for petroleum refinery waste, use of microorganisms in the bioremediation of industrial waste and toxicity reduction, microbial fuel cells, and microbial depolymerisation. The book also explores the biosorption of metals and the bioremediation of leachates, especially with regard to soil and groundwater remediation. It is a valuable resource for researchers, professionals, and policy makers alike.
This book focuses on value addition to various waste streams, which include industrial waste, agricultural waste, and municipal solid and liquid waste. It addresses the utilization of waste to generate valuable products such as electricity, fuel, fertilizers, and chemicals, while placing special emphasis on environmental concerns and presenting a multidisciplinary approach for handling waste. Including chapters authored by prominent national and international experts, the book will be of interest to researchers, professionals and policymakers alike.
This book discusses the history of nuclear decommissioning as a science and industry. It explores the early, little-known period when the term "decommissioning" was not used in the nuclear context and the end-of-life operations of a nuclear facility were a low priority. It then describes the subsequent period when decommissioning was recognized as a separate phase of the nuclear lifecycle, before bringing readers up to date with today's state of the art. The author addresses decommissioning as a mature industry in an era in which large, commercial nuclear reactors and other fuel-cycle installations have been fully dismantled, and their sites returned to other uses. The book also looks at the birth, growth and maturity of decommissioning, focusing on how new issues emerged, how these were gradually addressed, and the lessons learned from them. Further, it examines the technologies and management advances in science and industry that followed these solutions. Nuclear Decommissioning is a point of reference for industry researchers and decommissioning practitioners looking to enrich their knowledge of decommissioning in recent decades as well as the modern industry. The book is also of interest to historians and students who wish to learn more about the history of nuclear decommissioning.
This book reports on the 12th International Workshop on Railway Noise held on 12-16 September 2016 at Terrigal, Australia. It gathers peer-reviewed papers describing the latest developments in rail noise and vibration, as well as state-of-the-art reviews by distinguished experts in the field. The papers cover a broad range of rail noise topics including wheel squeal, policy, regulation and perception, wheel and rail noise, predictions, measurements and monitoring, interior noise, rail roughness, corrugation and grinding, high speed rail and aerodynamic noise, and structure-borne noise, ground-borne vibration and resilient track forms. It offers an essential reference-guide to both scientists and engineers in their daily efforts to identify, understand and solve a number of problems related to railway noise and vibration, and to achieve their ultimate goal of reducing the environmental impact of railway systems.
This textbook provides graduate and advanced undergraduate students with a comprehensive introduction to the application of basic principles and concepts for physical and engineering acoustics. Many of the chapters are independent, and all build from introductory to more sophisticated material. Written by a well-known textbook author with 39 years of experience performing research, teaching, and mentoring in the field, it is specially designed to provide maximum support for learning. Derivations are rigorous and logical, with thorough explanations of operations that are not obvious. Many of the derivations and examples have not previously appeared in print. Important concepts are discussed for their physical implications and implementation. Many of the 56 examples are mini case studies that address systems students will find to be interesting and motivating for continued study. The example solutions address both the significance of the example and the reasoning underlying the formulation. Tasks that require computational work are fully explained. This volume contains 168 homework exercises, accompanied by a detailed solutions manual for instructors. Building on the foundation provided in Volume I: Fundamentals, this text offers a knowledge base that will enable the reader to begin undertaking research and to work in the core areas of acoustics.
This book discusses energy transfer, fluid flow and pollution in built environments. It provides a comprehensive overview of the highly detailed fundamental theories as well as the technologies used and the application of heat and mass transfer and fluid flow in built environments, with a focus on the mathematical models and computational and experimental methods. It is a valuable resource for researchers in the fields of buildings and environment, heat transfer and global warming.
This edited book is devoted to environmental risk management in gas industry impacted polar ecosystems of Russia, one of the hottest topics of modern environmental science. The contributions from experts cover topics that shed new light on the impacts of oil and natural gas production on arctic ecosystems in the country as well as biogeochemical engineering technologies to manage pollution in these areas. Readers will also discover new insights on potential ecological indicators for assessing geo-environmental risks of these impacted ecosystems, and climate modeling in polar areas. The book has interdisciplinary appeal, and specialists and practitioners in environmental sciences, ecology, biogeochemistry and those within the energy sector who are interested in understanding ecosystems affected by anthropogenic impacts in severe climatic conditions will find it particularly engaging. Through this book, readers will learn more about biogeochemical cycling through food chains and specific reactions of biota to environmental pollution in extreme environments through the lens of experts.
This book is particularly concerned with China's path to green development and how it can be understood, exploring questions such as how the goal of Chinese-led green development can be achieved. The book provides systematic explanations of the theory of green development, exploring its background, its theoretical basis, the areas it covers, the stages it encompasses and the constraining and favorable factors involved. We see how humankind is at a period of transition from the traditional black industrial civilization to a modern green ecological civilization. The author gives a profound critique of the traditional Western model of development, provides a comprehensive analysis of the crisis and the opportunities presented by green development and depicts the grand goal of green modernization in a creative, bold, forward-looking manner. A three-step strategy to design and promote green development is proposed. Readers will discover why China must become an innovator, practitioner, and leader of green development, and how green planning is an important means to establish green development. The book explores how local governments can become green innovation practitioners, and how enterprises can become the main arena of green development. This book is a creative and innovative work that will appeal to scholars interested in the long-term development of humankind in general and China in particular. It also serves well as a green development textbook, presenting related scientific knowledge and important information for decision-making in a concise, easy-to-understand form.
This book offers a problem-and-solution approach to environmental remediation in mining, including the environmentally sustainable utilization of waste materials from the mining industry. It largely comprises articles published in Springer journals, which have been thoroughly revised and expanded. With supplementary data and illustrations, it discusses specific problem areas in relevant Caribbean locations and provides an overview of geotechnical and microbial solutions to prevent post-mining deterioration in this area.
Integrating information from several areas of engineering geology, hydrogeology, geotechnical engineering, this book addresses the general field of groundwater from an engineering perspective. It covers geological engineering as well as hydrogeological and environmental geological problems caused by groundwater engineering. It includes 10 chapters, i.e., basic groundwater theory, parameter calculation in hydrogeology, prevention of geological problem caused by groundwater, construction dewatering, wellpoint dewatering methods, dewatering wells and drilling, groundwater dewatering in foundation-pit engineering, groundwater engineering in bedrock areas, numerical simulation in groundwater engineering, groundwater corrosion on concrete and steel. Based on up-to-date literature, it describes recent developments and presents several case studies with examples and problems. It is an essential reference source for industrial and academic researchers working in the groundwater field and can also serve as lecture-based course material providing fundamental information and practical tools for both senior undergraduate and postgraduate students in fields of geology engineering, hydrogeology, geotechnical engineering or to conduct related research.
This book provides a comprehensive description of alkaline hydrometallurgy of amphoteric metal hazardous wastes. Topics focus on leaching of zinc and lead hazardous wastes, purification of leach solution of zinc and lead, electrowinning of zinc and lead from purified alkaline solutions, chemical reactions taking place in the production flowsheets, thermodynamic and spent electrolyte regeneration, alkaline hydrometallurgy of low-grade smithsonite ores, recovery of molybdenum and tungsten using ion flotation and solvent extraction processes and their application in chemical synthesis of Nb and Ta inorganic compounds, and industrial scale production of 1500-2000 t/a zinc powder using alkaline leaching-electrowinning processes. Processes described are cost-effective, generate lesser secondary pollutants, and have been applied widely in China. Readers that will find the book appealing include solid waste engineers, environmental managers, technicians, recycling coordinators, government officials, undergraduates and graduate students, and researchers.
This book offers a first-of-its-kind, standalone review of coalbed methane (CBM) in India, covering all the major technical and policy aspects. As an authoritative text on CBM in India, it addresses the essential geological, engineering and policy issues. The Coalbed Methane industry is a rapidly developing sector in Indian energy supply. The book presents the characteristics of coal beds in India's Damodar and Son river valleys, which influence the commercial viability of CBM in the regions, as well as a study of the gas contents of the country's major coalfields. The book begins with a brief review of methane emissions from Indian coal mines and the current coalbed methane situation in the country. Its unique features include a coalfield-by-coalfield technical assessment of CBM throughout India. Policy matters are addressed, including the National Exploration Licencing Policy (NELP) of the Indian Government Ministry of Petroleum and Natural Gas, which is vital to an overall understanding of CBM development in the country. The scope and depth of its book's coverage will benefit students, practising engineers, researchers and policy-makers.
This book is published open access under a CC BY 4.0 license. This report transfers the Ecological Scarcity Method (ESM) to the EU and its 28 member states. It provides a powerful tool for unbiased environmental assessments in enterprises and surveys the current impacts and the targets published by environmental authorities, specifically the European Environment Agency. ESM assesses environmental impacts of manufacturing sites and production processes. Developed in 1990 in Switzerland, ESM has already gained regulatory status in proving entitlements for tax exemptions. The method assesses all important impacts in air, water, energy consumption, waste generation and freshwater consumption and also supports environmental investment decisions.
This brief summarizes the role of certain catalysts and associated processes that are involved in the reduction or elimination of hazardous substances from wastewater and the exploitation of renewable raw materials. The authors begin by providing a summary of the most recent developments in catalysts used in the advanced oxidation of organic pollutants in aqueous phase. Advanced Oxidation Processes (AOPS) are described in terms of homogeneous and heterogeneous catalysts. Some emphasis is placed on the role nanocatalysts, perovskite-type catalysts, and green catalysts play in several AOPs such as Fenton Chemistry, photocatalytic oxidation, and the hybrid technologies that combine different processes. Catalyst preparation, characterization, reaction chemistry, and process technology are described. Specific wastewater case studies which illustrate the role of these catalysts in AOPs completes the brief. |
You may like...
Novel Materials for Environmental…
Dimitrios A. Giannakoudakis, Lucas Meili, …
Paperback
R3,335
Discovery Miles 33 350
Advanced Materials for Sustainable…
Dimitrios A. Giannakoudakis, Lucas Meili, …
Paperback
R3,402
Discovery Miles 34 020
Algae Based Bioelectrochemical Systems…
Durga Madhab Mahapatra, Lakhveer Singh, …
Paperback
R3,506
Discovery Miles 35 060
Environmental Resilience and…
A. L. Ramanathan, Chidambaram Sabarathinam, …
Paperback
R3,070
Discovery Miles 30 700
|