![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Relativity physics
Spacetime and Geometry is an introductory textbook on general relativity, specifically aimed at students. Using a lucid style, Carroll first covers the foundations of the theory and mathematical formalism, providing an approachable introduction to what can often be an intimidating subject. Three major applications of general relativity are then discussed: black holes, perturbation theory and gravitational waves, and cosmology. Students will learn the origin of how spacetime curves (the Einstein equation) and how matter moves through it (the geodesic equation). They will learn what black holes really are, how gravitational waves are generated and detected, and the modern view of the expansion of the universe. A brief introduction to quantum field theory in curved spacetime is also included. A student familiar with this book will be ready to tackle research-level problems in gravitational physics.
This book provides a number of combinatorial tools that allow a systematic study of very general discrete spaces involved in the context of discrete quantum gravity. In any dimension D, we can discretize Euclidean gravity in the absence of matter over random discrete spaces obtained by gluing families of polytopes together in all possible ways. These spaces are then classified according to their curvature. In D=2, it results in a theory of random discrete spheres, which converge in the continuum limit towards the Brownian sphere, a random fractal space interpreted as a quantum random space-time. In this limit, the continuous Liouville theory of D=2 quantum gravity is recovered. Previous results in higher dimension regarded triangulations, converging towards a continuum random tree, or gluings of simple building blocks of small sizes, for which multi-trace matrix model results are recovered in any even dimension. In this book, the author develops a bijection with stacked two-dimensional discrete surfaces for the most general colored building blocks, and details how it can be used to classify colored discrete spaces according to their curvature. The way in which this combinatorial problem arrises in discrete quantum gravity and random tensor models is discussed in detail.
This book is the second edition of an excellent undergraduate-level overview of classical and modern physics, intended for students of physics and related subjects, and also perfectly suited for the education of physics teachers. The twelve-chapter book begins with Newton's laws of motion and subsequently covers topics such as thermodynamics and statistical physics, electrodynamics, special and general relativity, quantum mechanics and cosmology , the standard model and quantum chromodynamics. The writing is lucid, and the theoretical discussions are easy to follow for anyone comfortable with standard mathematics. An important addition in this second edition is a set of exercises and problems, distributed throughout the book. Some of the problems aim to complement the text, others to provide readers with additional useful tools for tackling new or more advanced topics. Furthermore, new topics have been added in several chapters; for example, the discovery of extra-solar planets from the wobble of their mother stars, a discussion of the Landauer principle relating information erasure to an increase of entropy, quantum logic, first order quantum corrections to the ideal gas equation of state due to the Fermi-Dirac and Bose-Einstein statistics. Both gravitational lensing and the time-correction in geo-positioning satellites are explained as theoretical applications of special and general relativity. The discovery of gravitational waves, one of the most important achievements of physical sciences, is presented as well. Professional scientists, teachers, and researchers will also want to have this book on their bookshelves, as it provides an excellent refresher on a wide range of topics and serves as an ideal starting point for expanding one's knowledge of new or unfamiliar fields. Readers of this book will not only learn much about physics, they will also learn to love it.
This textbook is suitable for a one-semester introduction to General Relativity for advanced undergraduates in physics and engineering. The book is concise so that the entire material can be covered in the one-semester time frame. Besides, the readers are introduced to the subject easily without the need for advanced mathematics. Though concise, the theory development is lucid and the readers are exposed to possible analytic calculations. Full solutions to some important problems are provided, and the experimental evidence is discussed in detail.Resources are provided to instructors who adopt this textbook for their courses. Adopting instructors can print and copy portions of these resources solely for their teaching needs. All instructional resources are furnished for informational use only, and are subject to change without notice.
This textbook provides an introduction to gravitational lensing, which has become an invaluable tool in modern astrophysics, with applications that range from finding planets orbiting distant stars to understanding how dark matter and dark energy conspired to form the cosmic structures we see today. Principles of Gravitational Lensing begins with Einstein's prediction that gravity bends light, and shows how that fundamental idea has spawned a rich field of study over the past century. The gravitational deflection of light was first detected by Eddington during a solar eclipse in May 1919, launching Einstein and his theory of relativity into public view. Yet the possibility of using the phenomenon to unlock mysteries of the Universe seemed remote, given the technology of the day. Theoretical work was carried out sporadically over the next six decades, but only with the discovery of the system Q0957+561 in 1979 was gravitational lensing transformed from a curiosity of general relativity into a practical observational tool. This book describes how the three subfields known as strong lensing, weak lensing, and microlensing have grown independently but become increasingly intertwined. Drawing on their research experience, Congdon and Keeton begin with the basic physics of light bending, then present the mathematical foundations of gravitational lensing, building up to current research topics in a clear and systematic way. Relevant background material from physics and mathematics is included, making the book self-contained. The derivations and explanations are supplemented by exercises designed to help students master the theoretical concepts as well as the methods that drive current research. An extensive bibliography guides those wishing to delve more deeply into particular areas of interest. Principles of Gravitational Lensing is ideal for advanced students and seasoned researchers looking to penetrate this thriving subject and even contribute research of their own.
Einstein's theory of general relativity is a cornerstone of modern physics. It also touches upon a wealth of topics that students find fascinating - black holes, warped spacetime, gravitational waves, and cosmology. Now reissued by Cambridge University Press, this ground-breaking text helped to bring general relativity into the undergraduate curriculum, making it accessible to virtually all physics majors. One of the pioneers of the 'physics-first' approach to the subject, renowned relativist James B. Hartle, recognized that there is typically not enough time in a short introductory course for the traditional, mathematics-first, approach. In this text, he provides a fluent and accessible physics-first introduction to general relativity that begins with the essential physical applications and uses a minimum of new mathematics. This market-leading text is ideal for a one-semester course for undergraduates, with only introductory mechanics as a prerequisite.
It has already been called the scientific breakthrough of the century: the detection of gravitational waves. Einstein predicted these tiny ripples in the fabric of spacetime nearly a hundred years ago, but they were never perceived directly until now. Decades in the making, this momentous discovery has given scientists a new understanding of the cataclysmic events that shape the universe and a new confirmation of Einstein's theory of general relativity. Ripples in Spacetime is an engaging account of the international effort to complete Einstein's project, capture his elusive ripples, and launch an era of gravitational-wave astronomy that promises to explain, more vividly than ever before, our universe's structure and origin. The quest for gravitational waves involved years of risky research and many personal and professional struggles that threatened to derail one of the world's largest scientific endeavors. Govert Schilling takes readers to sites where these stories unfolded-including Japan's KAGRA detector, Chile's Atacama Cosmology Telescope, the South Pole's BICEP detectors, and the United States' LIGO labs. He explains the seeming impossibility of developing technologies sensitive enough to detect waves from two colliding black holes in the very distant universe, and describes the astounding precision of the LIGO detectors. Along the way Schilling clarifies concepts such as general relativity, neutron stars, and the big bang using language that readers with little scientific background can grasp. Ripples in Spacetime provides a window into the next frontiers of astronomy, weaving far-reaching predictions and discoveries into a gripping story of human ambition and perseverance.
This book, first appearing in German in 2004 under the title Spezielle Relativitatstheorie fur Studienanfanger, offers access to the special theory of relativity for readers with a background in mathematics and physics comparable to a high school honors degree. All mathematical and physical competence required beyond that level is gradually developed through the book, as more advanced topics are introduced. The full tensor formalism, however, is dispensed with as it would only be a burden for the problems to be dealt with. Eventually, a substantial and comprehensive treatise on special relativity emerges which, with its gray-shaded formulary, is an invaluable reference manual for students and scientists alike.Some crucial results are derived more than once with different approaches: the Lorentz transformation in one spatial direction three times, the Doppler formula four times, the Lorentz transformation in two directions twice; also twice the unification of electric and magnetic forces, the velocity addition formula, as well as the aberration formula. Beginners will be grateful to find several routes to the goal; moreover, for a theory like relativity, it is of fundamental importance to demonstrate that it is self-contained and without contradictions.Author's website: www.relativity.ch.
A Broad Perspective on the Theory of General Relativity and Its Observable ImplicationsGeneral Relativity: Basics and Beyond familiarizes students and beginning researchers with the basic features of the theory of general relativity as well as some of its more advanced aspects. Employing the pedagogical style of a textbook, it includes essential ideas and just enough background material needed for readers to appreciate the issues and current research. BasicsThe first five chapters form the core of an introductory course on general relativity. The author traces Einstein's arguments and presents examples of space-times corresponding to different types of gravitational fields. He discusses the adaptation of dynamics in a Riemannian geometry framework, the Einstein equation and its elementary properties, and different phenomena predicted or influenced by general relativity. BeyondMoving on to more sophisticated features of general relativity, the book presents the physical requirements of a well-defined deterministic framework for non-gravitational dynamics and describes the characterization of asymptotic space-times. After covering black holes, gravitational waves, and cosmological space-times, the book examines the evolutionary interpretation for the class of globally hyperbolic space-times, explores numerical relativity, and discusses approaches that address the challenges of general relativity.
Essential Dynamics & Relativity provides students with an introduction to the core aspects of dynamics and special relativity. The author reiterates important ideas and terms throughout and covers concepts that are often missing from other textbooks at this level. He also places each topic within the wider constructs of the theory, without jumping from topic to topic to illustrate a point. The first section of the book focuses on dynamics, discussing the basic aspects of single particle motion and analyzing the motion of multi-particle systems. The book also explains the dynamical behavior of both composite bodies (rigid bodies) and objects in non-inertial frames of reference (rotating reference frames). The second section concentrates on relativity. The author describes the ideas leading to the inception of special relativity. He also formulates fundamental aspects, such as time dilation, length contraction, Lorentz transformations, and the visual aids of Minkowski diagrams, necessary to develop more sophisticated ideas. He then develops the concepts within the context of relativistic mechanics. With many examples throughout and exercises at the end of each chapter, this text makes the often daunting and confusing ideas of dynamics and special relativity accessible to undergraduate students studying the subjects for the first time.
Cosmology has undergone a revolution in recent years. The exciting
interplay between astronomy and fundamental physics has led to
dramatic revelations, including the existence of the dark matter
and the dark energy that appear to dominate our cosmos. But these
discoveries only reveal themselves through small effects in noisy
experimental data. Dealing with such observations requires the
careful application of probability and statistics.
This book is divided into two parts. In the first part we introduce the foundations of special relativity, such as, the inertial frame of reference, the definition of simulataneity, and Einstein's two basic hypotheses. We give the main relativistic effects, e.g. the relativity of simultaneity, velocity addition, length-contraction, the apparent shape of a moving body, time-dilation, Doppler effect, and the Thomas precession, In particular, the simultaneity problem and slow transport of clocks are investigated in detail by means of the test theories of special relativity. In the second part, variant types of experiments performed up to now are analyzed and compared to the predictions of special relativity. This shows that the experiments are a test of the two-way speed of light, but not of the one-way speed of light.
Starting off from noneuclidean geometries, apart from the method of Einstein's equations, this book derives and describes the phenomena of gravitation and diffraction. A historical account is presented, exposing the missing link in Einstein's construction of the theory of general relativity: the uniformly rotating disc, together with his failure to realize, that the Beltrami metric of hyperbolic geometry with constant curvature describes exactly the uniform acceleration observed. This book also explores these questions: * How does time bend? * Why should gravity propagate at the speed of light? * How does the expansion function of the universe relate to the absolute constant of the noneuclidean geometries? * Why was the Sagnac effect ignored? * Can Maxwell's equations accommodate mass? * Is there an inertia due solely to polarization? * Can objects expand in elliptic geometry like they contract in hyperbolic geometry?
This book contains the Proceedings of the Sixth Meeting on CPT and Lorentz Symmetry, held at Indiana University in Bloomington on June 17-21, 2013. The Meeting focused on tests of these fundamental symmetries and on related theoretical issues, including scenarios for possible violations.Topics covered at the meeting include searches for CPT and Lorentz violations involving: accelerator and collider experiments; atomic, nuclear, and particle decays; birefringence, dispersion, and anisotropy in cosmological sources; clock-comparison measurements; electromagnetic resonant cavities and lasers; tests of the equivalence principle; gauge and Higgs particles; high-energy astrophysical observations; laboratory tests of gravity; matter interferometry; neutrino oscillations and propagation; oscillations and decays of neutral mesons; particle-antiparticle comparisons; post-newtonian gravity in the solar system and beyond; second- and third-generation particles; space-based missions; spectroscopy of hydrogen and antihydrogen; spin-polarized matter; and time-of-flight measurements. Theoretical discussions include physical effects at the level of the Standard Model, General Relativity, and beyond; the possible origins and mechanisms for Lorentz and CPT violations; classical and quantum issues in field theory, particle physics, gravity, and string theory; and mathematical foundations including Finsler geometry.
In this compendium of essays, some of the world's leading thinkers discuss their conceptions of space and time, as viewed through the lens of their own discipline. With an epilogue on the limits of human understanding, this volume hosts contributions from six or more diverse fields. It presumes only rudimentary background knowledge on the part of the reader. Time and again, through the prism of intellect, humans have tried to diffract reality into various distinct, yet seamless, atomic, yet holistic, independent, yet interrelated disciplines and have attempted to study it contextually. Philosophers debate the paradoxes, or engage in meditations, dialogues and reflections on the content and nature of space and time. Physicists, too, have been trying to mold space and time to fit their notions concerning micro- and macro-worlds. Mathematicians focus on the abstract aspects of space, time and measurement. While cognitive scientists ponder over the perceptual and experiential facets of our consciousness of space and time, computer scientists theoretically and practically try to optimize the space-time complexities in storing and retrieving data/information. The list is never-ending. Linguists, logicians, artists, evolutionary biologists, geographers etc., all are trying to weave a web of understanding around the same duo. However, our endeavour into a world of such endless imagination is restrained by intellectual dilemmas such as: Can humans comprehend everything? Are there any limits? Can finite thought fathom infinity? We have sought far and wide among the best minds to furnish articles that provide an overview of the above topics. We hope that, through this journey, a symphony of patterns and tapestry of intuitions will emerge, providing the reader with insights into the questions: What is Space? What is Time? Chapter [15] of this book is available open access under a CC BY 4.0 license.
This book focuses on the development and implementation of the longitudinal, angular and frequency controls of the Advanced Virgo detector, both from the simulation and experimental point of view, which contributed to Virgo reaching a sensitivity that enabled it to join the LIGO-Virgo O2 run in August 2017. This data taking was very successful, with the first direct detection of a binary black hole merger (GW170814) using the full network of three interferometers, and the first detection and localization of a binary neutron star merger (GW170817). The second generation of gravitational wave detector, Advanced Virgo, is capable of detecting differential displacements of the order of 10-21m. This means that it is highly sensitive to any disturbance, including the seismic movement of the Earth. For this reason an active control is necessary to keep the detector in place with sufficient accuracy.
A Broader View of Relativity shows that there is still new life in old physics. The book examines the historical context and theoretical underpinnings of Einstein's theory of special relativity and describes Broad Relativity, a generalized theory of coordinate transformations between inertial reference frames that includes Einstein's special relativity as a special case. It shows how the principle of relativity is compatible with multiple concepts of physical time and how these different procedures for clock synchronization can be useful for thinking about different physical problems, including many-body systems and the development of a Lorentz-invariant thermodynamics. Broad relativity also provides new answers to old questions such as the necessity of postulating the constancy of the speed of light and the viability of Reichenbach's general concept of time. The book also draws on the idea of limiting-four-dimensional symmetry to describe coordinate transformations and the physics of particles and fields in non-inertial frames, particularly those with constant linear accelerations. This new edition expands the discussion on the role that human conventions and unit systems have played in the historical development of relativity theories and includes new results on the implications of broad relativity for clarifying the status of constants that are truly fundamental and inherent properties of our universe.
This is one of the very few books focusing on relativistic statistical mechanics, and is written by a leading expert in this special field. It started from the notion of relativistic kinetic theory, half a century ago, exploding into relativistic statistical mechanics. This will interest specialists of various fields, especially the (classical and quantum) plasma physics. However, quantum physics - to which a major part is devoted - will be of more interest since, not only it applies to quantum plasma physics, but also to nuclear matter and to strong magnetic field, cosmology, etc. Although the domain of gauge theory is not covered in this book, the topic is not completely forgotten, in particular in the domain of plasma physics. This book is particularly readable for graduate students and a fortiori to young researchers for whom it offers methods and also appropriate schemes to deal with the current problems encountered in astrophysics, in strong magnetic, in nuclear or even in high energy physics.
This book examines the rise and proliferation of 'Supermaxes', large prisons dedicated to holding prisoners in prolonged and strict solitary confinement, in the United States since the late 1980s. Drawing on unique access to two Supermax prisons and on in-depth interviews with prison officials, prison architects, current and former prisoners, mental health professionals, penal, legal, and human rights experts, it provides a holistic view of the theory, practice and consequences of these prisons. Given the historic uses of solitary confinement, the book also traces continuities and discontinuities in its use on both sides of the Atlantic over the last two centuries. It argues that rather than being an entirely 'new' form of imprisonment, Supermax prisons draw on principles of architecture, surveillance and control which were set out in the early 19th century but which are now enhanced by the most advanced technologies available to current day prison planners and administrators. It asks why a form of confinement which had been discredited in the past is now proposed as the best solution for dealing with 'difficult', 'dangerous' or 'disruptive' prisoners, and assesses the true costs of Supermax confinement.
This book examines the rise and proliferation of 'Supermaxes', large prisons dedicated to holding prisoners in prolonged and strict solitary confinement, in the United States since the late 1980s. Drawing on unique access to two Supermax prisons and on in-depth interviews with prison officials, prison architects, current and former prisoners, mental health professionals, penal, legal, and human rights experts, it provides a holistic view of the theory, practice and consequences of these prisons. Given the historic uses of solitary confinement, the book also traces continuities and discontinuities in its use on both sides of the Atlantic over the last two centuries. It argues that rather than being an entirely 'new' form of imprisonment, Supermax prisons draw on principles of architecture, surveillance and control which were set out in the early 19th century but which are now enhanced by the most advanced technologies available to current day prison planners and administrators. It asks why a form of confinement which had been discredited in the past is now proposed as the best solution for dealing with 'difficult', 'dangerous' or 'disruptive' prisoners, and assesses the true costs of Supermax confinement.
In recent years, the old idea that gauge theories and string
theories are equivalent has been implemented and developed in
various ways, and there are by now various models where the string
theory / gauge theory correspondence is at work. One of the most
important examples of this correspondence relates Chern-Simons
theory, a topological gauge theory in three dimensions which
describes knot and three-manifold invariants, to topological string
theory, which is deeply related to Gromov-Witten invariants. This
has led to some surprising relations between three-manifold
geometry and enumerative geometry. This book gives the first
coherent presentation of this and other related topics. After an
introduction to matrix models and Chern-Simons theory, the book
describes in detail the topological string theories that correspond
to these gauge theories and develops the mathematical implications
of this duality for the enumerative geometry of Calabi-Yau
manifolds and knot theory. It is written in a pedagogical style and
will be useful reading for graduate students and researchers in
both mathematics and physics willing to learn about these
developments.
Yi-Shi Duan (1927-2016) was one of the world-renowned pioneers in the study of gauge field theory and general relativity. Trained in the former Soviet Union, Prof. Duan returned to China in 1957 to work in Lanzhou University for 60 years. In 1963, he came up with a general co-variant form of the conservation law of the energy-momentum tensor in general relativity. In 1979, he suggested that the gauge potential could be decomposed, which has important implications to gauge field theory. He trained in China a big team of talents in theoretical physics. His contributions to theoretical physics in China have earned him praise from both Professor Shiing-Shen Chern and Professor Chen-Ning Yang.
This book, now in its second edition, provides an introductory course on theoretical particle physics with the aim of filling the gap that exists between basic courses of classical and quantum mechanics and advanced courses of (relativistic) quantum mechanics and field theory. After a concise but comprehensive introduction to special relativity, key aspects of relativistic dynamics are covered and some elementary concepts of general relativity introduced. Basics of the theory of groups and Lie algebras are explained, with discussion of the group of rotations and the Lorentz and Poincare groups. In addition, a concise account of representation theory and of tensor calculus is provided. Quantization of the electromagnetic field in the radiation range is fully discussed. The essentials of the Lagrangian and Hamiltonian formalisms are reviewed, proceeding from systems with a finite number of degrees of freedom and extending the discussion to fields. The final four chapters are devoted to development of the quantum field theory, ultimately introducing the graphical description of interaction processes by means of Feynman diagrams. The book will be of value for students seeking to understand the main concepts that form the basis of contemporary theoretical particle physics and also for engineers and lecturers. An Appendix on some special relativity effects is added. |
![]() ![]() You may like...
Interventional Oncology - A Practical…
Peter Mueller, Andreas Adam
Hardcover
R4,898
Discovery Miles 48 980
Africa Solo - My World Record Race From…
Mark Beaumont
Paperback
![]()
Functional Brain Mapping: Methods and…
Vassiliy Tsytsarev, Vicky Yamamoto, …
Hardcover
R3,029
Discovery Miles 30 290
Novel Optical Endoscopes for Early…
Dale Jonathan Waterhouse
Hardcover
R3,020
Discovery Miles 30 200
Remembering St. Petersburg, Florida…
Scott Taylor Hartzell
Paperback
|