![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Relativity physics
THE EDITORS: DAVID L. BLOCK AND KENNETH C. FREEMAN (SOC CO-CHAIRS), IVANIO PUERARI, ROBERT GROESS AND LIZ K. BLOCK 1. Harvard College Observatory, 1958 The past century has truly brought about an explosive period of growth and discovery for the physical sciences as a whole, and for astronomy in particular. Galaxy morphology has reached a renaissance . . The year: 1958. The date: October 1. The venue: Harvard College Observatory. The lecturer: Walter Baade. With amazing foresight, Baade penned these words: "Young stars, supergiants and so on, make a terrific splash - lots of light. The total mass of these can be very small compared to the total mass of the system". Dr Layzer then asked the key question: " . . . the discussion raises the point of what this classification would look like if you were to ignore completely all the Population I, and just focus attention on the Population II . . . " We stand on the shoulders of giants. The great observer E. E. Barnard, in his pioneering efforts to photograph the Milky Way, devoted the major part of his life to identifying and numbering dusty "holes" and dust lanes in our Milky Way. No one could have dreamt that the pervasiveness of these cosmic dust masks (not only in our Galaxy but also in galaxies at high redshift) is so great, that their "penetration" is truly one of the pioneering challenges from both space-borne telescopes and from the ground.
In this book, the author leads the reader, step by step and without any advanced mathematics, to a clear understanding of the foundations of modern elementary particle physics and cosmology. He also addresses current and controversial questions on topics such as string theory. The book contains gentle introductions to the theories of special and general relativity, and also classical and quantum field theory. The essential aspects of these concepts are understood with the help of simple calculations; for example, the force of gravity as a consequence of the curvature of the space-time. Also treated are the Big Bang, dark matter and dark energy, as well as the presently known interactions of elementary particles: electrodynamics, the strong and the weak interactions including the Higgs boson. Finally, the book sketches as yet speculative theories: Grand Unification theories, supersymmetry, string theory and the idea of additional dimensions of space-time. Since no higher mathematical or physics expertise is required, the book is also suitable for college and university students at the beginning of their studies. Hobby astronomers and other science enthusiasts seeking a deeper insight than can be found in popular treatments will also appreciate this unique book.
This book provides an introduction to the theory of relativity and the mathematics used in its processes. Three elements of the book make it stand apart from previously published books on the theory of relativity. First, the book starts at a lower mathematical level than standard books with tensor calculus of sufficient maturity to make it possible to give detailed calculations of relativistic predictions of practical experiments. Self-contained introductions are given, for example vector calculus, differential calculus and integrations. Second, in-between calculations have been included, making it possible for the non-technical reader to follow step-by-step calculations. Thirdly, the conceptual development is gradual and rigorous in order to provide the inexperienced reader with a philosophically satisfying understanding of the theory. The goal of this book is to provide the reader with a sound conceptual understanding of both the special and general theories of relativity, and gain an insight into how the mathematics of the theory can be utilized to calculate relativistic effects.
The 1994 Cargese Summer Institute on Frontiers in Partide Physics was organized by the Universite Pierre et Marie Curie, Paris (M. Levy), the Ecole Normale Superieure, Paris (J. Iliopoulos), the Katholieke Universiteit Leuven (R. Gastmans), and the Uni- versite Catholique de Louvain (J. -M. Gerard), which, since 1975, have joined their efforts and worked in common. It was the eleventh Summer Institute on High Energy Physics organized jointly at Cargese by three of these universities. Severa! new frontiers in partide physics were thoroughly discussed at this school. the new euergy range in deep-iuelastic electron-proton scattering is beiug In particular, explored by HERA (DESY, Hamburg), and Professor A. De Roeck described the first results from the H1 and Zeus experiments, while Professors A. H. Mueller aud Z. Kuuszt discussed their relevance from the theoretical point of view. Also, the satellite exper- iments offer new possibilities for exploring the links between astrophysics, cosmology, and partide physics. A critica] a. nalysis of these experiments was performed by Pro- fessor B. Sadoulet, and Professor M. Spiro made the connection with the results from earth-based neutrino experiments. Finally, much attentiou was giveu to the latest re- sults from the TEVATRON (Fermilab, USA), showing further evidence for the loug awaited top quark. Professor A. Tollestrup gave a detailed presentation of these results aud discussed their importance for the Standard Model.
This thesis is based on the first data from the Large Hadron Collider (LHC) at CERN. Its theme can be described as the classical Rutherford scattering experiment adapted to the LHC: measurement of scattering angles to search for new physics and substructure. At the LHC, colliding quarks and gluons exit the proton collisions as collimated particle showers, or jets. The thesis presents studies of the scattering angles of these jets. It includes a phenomenological study at the LHC design energy of 14 TeV, where a model of so-called large extra dimensions is used as a benchmark process for the sensitivity to new physics. The experimental result is the first measurement, made in 2010, by ATLAS, operating at the LHC start-up energy of 7 TeV. The result is compatible with the Standard Model and demonstrates how well the physics and the apparatus are understood. The first data is a tiny fraction of what will be accumulated in the coming years, and this study has set the stage for performing these measurements with confidence as the LHC accumulates luminosity and increases its energy, thereby probing smaller length scales.
A major outstanding problem in physics is understanding the nature of the dark energy that is driving the accelerating expansion of the Universe. This thesis makes a significant contribution by demonstrating, for the first time, using state-of-the-art computer simulations, that the interpretation of future galaxy survey measurements is far more subtle than is widely assumed, and that a major revision to our models of these effects is urgently needed. The work contained in the thesis was used by the WiggleZ dark energy survey to measure the growth rate of cosmic structure in 2011 and had a direct impact on the design of the surveys to be conducted by the European Space Agency's Euclid mission, a 650 million euro project to measure dark energy.
This book addresses physicists working in general relativity, astrophysics and cosmology. The contributions are based on reports given at a summer school the goal of which was to review modern research for students. The school was centered on the study of gravitational fields corresponding to rotating objects of astrophysical interest, under different viewpoints: theoretical, numerical and observational. Special emphasis is put on the analysis of interior and exterior fields of stationary axisymmetric systems. Lectures and contributions, collected here in Part I, ranged from basic information useful to newcomers to technical points pertaining to current research in this area. Part II contains lectures and contributions on other aspects of gravitation theory.
Supergravity can be seen as an intermediate step between general relativity and a future quantum theory of gravity. For the reader familiar with the basic concepts, this volume gives a concise presentation of both conformal and Poincare supergravity. The consistent four-dimensional supergravity theories are classified. For the practitioner in this field the book will be a valuable source, in particular with respect to the rather awkward formulae needed for further modelling, which have been carefully checked by the author. The book will be helpful not only for researchers, but also for advanced students."
List of Participants **. **. *. . . . *. . **. . . **. **. *. *. . . **. *. *. . . **. * xi I. MOSS / The Quantum Origin of the Universe ****. *. *. ***. ***. *** M. S. TUru~ER / Cosmology and Particle Physics *. . ***. **. *. . ***. ** 19 G. GELMINI / Supersynunetry and the Early Universe ***. *. **. . *. *. . 115 J. D. BARROW / Relativistic Cosmology. . . . . . . . . . . . . . . . . . . . . . . . . . . 125 P. J. E. PEEBLES / Yet Another Scenario for Galaxy Formation . **. 203 ?:1. B. '-lISE / Non-Gaussian Fluctuations. . . . . . . . . . . . . . . . . . . . . . . . . . 215 S. D. H. mUTE / N-body Hethods and the Formation of Large-Scale Structure * . *. . . . * . * * . * * * . . . * . . . . * * . . . * . * . . 239 * . . . * * . . . . * T. PI~~ / Numerical Relativity and Cosmology. . . . . . . . . . . . . . . . . . . 261 J. R. BOND / Distortions and Anisotropies of the Cosmic Background Radiation *. *. . . **. **. ***. ****. . **. . *****. ** 283 J. V. HALL / The Early Universe - An Observer's View. . . . . . . . . . . . 335 G. GELHINI / Can the Solar Neutrino Problem be the First Detected Signature of Dark Hatter from the Halo of Our Galaxy? 351 A. K. DRUKIER / Detecting Cold Dark !1atter Candidates *. *. *. . . *. . 361 S. TOULMIN / The Early Universe: Historical and Philosophical Perspectives . *. *. . . . . . . *. . . . ***. *. *. *. *. . . . ****. . *. *. * 393 INDEX . . *. . . *. . . **. . . ****. . . *****. . . *. *. *. . *. . . . *. . *. *. . . **. ***.
The articles collected in this volume cover topics ranging from Planck-scale physics to galaxy clustering. They deal with various new ideas from cosmology, astrophysics and particle physics that might lead to a better understanding of our physical universe. Among the topics covered are inflationary models, nucleosynthesis, dark matter, large-scale clustering, cosmic microwave background radiations and more. The book addresses researchers but it also gives a good overview of the subject for graduate students in astrophysics and particle physics.
Published in honour of Marc Feix this book tries to give a thorough overview of mathematical methods, analytical and numerical techniques and simulations applied to a variety of problems from physics and engineering. The book addresses graduate students, researchers and especially engineers. The main emphasis is to apply the generality of methods to form a coherent and stimulating approach to practical investigations.
The observational evidence for the existence of black holes has grown significantly over recent decades. Stellar-mass black holes are detected as X-ray sources in binary systems, while supermassive black holes, with masses more than a million times the mass of the Sun, lurk in the nuclei of galaxies. These proceedings provide a useful and up-to-date overview of the observations of black holes in binaries, in the center of the Milky Way, and in the nuclei of galaxies, presented by leading expert astronomers. Special attention is given to the formation (including the recent evidence from gamma-ray bursts), physical properties, and demographics of black holes.
Indispensable for the building of cosmological models are precise observational data. To provide such data is the main purpose of this book. First, an analysis of recent cosmological observations using artificial satellites and large ground-based telescopes is given. Among these are the observation of the spatial distribution of galaxies and clusters, the detection of peculiar velocity fields in large regions, and the measurement of anisotropies in the microwave background radiation. Second, the authors present theoretical models which best fit the given observational data. The book addresses graduate students and astronomers and astrophysicists.
Meant as a review for students of astrophysics and particle physics, this book contains a selection of survey articles and seminar reports on "high energy cosmology." Included are contributions on topics ranging from classical cosmology, large scale structure, and primordial nucleosynthesis to quantum cosmology, covering both the theoretical aspects and the most important observations.
This collection of articles gives a nice overview of the fast growing field of diffusion and transport. The area of non-Browman statistical mechanics has many extensions into other fields like biology, ecology, geophysics etc. These tutorial lectures address e.g. Levy flights and walks, diffusion on metal surfaces or in superconductors, classical diffusion, biased and anomalous diffusion, chemical reaction diffusion, aging in glassy systems, diffusion in soft matter and in nonsymmetric potentials, and also new problems like diffusive processes in econophysics and in biology."
'Gravity, a Geometrical Course' presents general relativity (GR) in a systematic and exhaustive way, covering three aspects that are homogenized into a single texture: i) the mathematical, geometrical foundations, exposed in a self consistent contemporary formalism, ii) the main physical, astrophysical and cosmological applications, updated to the issues of contemporary research and observations, with glimpses on supergravity and superstring theory, iii) the historical development of scientific ideas underlying both the birth of general relativity and its subsequent evolution. The book is divided in two volumes. Volume Two is covers black holes, cosmology and an introduction to supergravity. The aim of this volume is two-fold. It completes the presentation of GR and it introduces the reader to theory of gravitation beyond GR, which is supergravity. Starting with a short history of the black hole concept, the book covers the Kruskal extension of the Schwarzschild metric, the causal structures of Lorentzian manifolds, Penrose diagrams and a detailed analysis of the Kerr-Newman metric. An extensive historical account of the development of modern cosmology is followed by a detailed presentation of its mathematical structure, including non-isotropic cosmologies and billiards, de Sitter space and inflationary scenarios, perturbation theory and anisotropies of the Cosmic Microwave Background. The last three chapters deal with the mathematical and conceptual foundations of supergravity in the frame of free differential algebras. Branes are presented both as classical solutions of the bulk theory and as world-volume gauge theories with particular emphasis on the geometrical interpretation of kappa-supersymmetry. The rich bestiary of special geometries underlying supergravity lagrangians is presented, followed by a chapter providing glances on the equally rich collection of special solutions of supergravity. Pietro Fre is Professor of Theoretical Physics at the University of Torino, Italy and is currently serving as Scientific Counsellor of the Italian Embassy in Moscow. His scientific passion lies in supergravity and all allied topics, since the inception of the field, in 1976. He was professor at SISSA, worked in the USA and at CERN. He has taught General Relativity for 15 years. He has previously two scientific monographs, "Supergravity and Superstrings" and "The N=2 Wonderland", He is also the author of a popular science book on cosmology and two novels, in Italian.
1. The Workshop and this Tome In the excellent bucolic setting of SchloB Ringberg in Upper Bavaria, over 50 scientists assembled during the week of 23-28 September 1996 to discuss recent results, both theoretical and observational in nature, on the large scale structure of the Universe. Such a topic is perhaps nowadays far too encompassing, and is essentially all of what we used to call "observational cosmology. " The original philosophy of the organization of this meeting was deliber ated aimed at the younger community and their contributions. As a conse quence, the content of the presentations was refreshingly new, as it should be. In spite of the deficiences caused by the lack of certain key researchers in this field, for one reason or another, the final result was rewarding to all. Although the conference was held in Fall 1996, the contributions contained herein were submitted as late as Spring 1998, thus the content maintains some degree of trendiness. Originally the current volume was to be a "proceedings. " This refers to the usual archival tome that fills one's shelf and is rarely consulted, except to see the canonical group photo, which by the way, we also have. Nevertheless, I wanted something more than that. Although the field is rapidly changing, with so-called facts in a state ofconstant volubility, now is a good time for reflection prior to the commencement ofthe Sloan Survey, presumably the definitive large-scale program of low- to moderate-redshift galaxies in our lifetime.
This is an exhaustive review of our theoretical and observational knowledge of gravitational lensing 10 years after the discovery of the first lensed quasar, Q0957+561. Gravitational optics, optical, infrared, and radio observations of quasar-lens candidates, microlensing, arcs in clusters of galaxies, and radio rings are presented. In particular, the continuing survey of quasar-lens candidates, the new measurement of the time delay in 0957+561, the suspended microlensing effect through the galaxy 2237+030, as well as the discovery of new arcs and the measurement of new redshifts for two of them are presented. Numerous papers on the modelling of arcs and rings show how it should be possible to probe dark matter with these unexpected gravitational telescopes. Finally, tables summarize all the lens candidates we know today.
This is the first volume in a series of books on the general theme of Supersymmetric Mechanics; the series is based on lectures and discussions held in 2005 and 2006 at the INFN-Laboratori Nazionali di Frascati. This volume supplies a pedagogical introduction, at the non-expert level, to the attractor mechanism in space-time singularities. After a qualitative overview, explicit examples realizing the attractor mechanism are treated at length.
The reviews presented in this volume cover a huge range of cluster of galaxies topics. Readers will find the book essential reading on subjects such as the physics of the ICM gas, the internal cluster dynamics, and the detection of clusters using different observational techniques. The expert chapter authors also cover the huge advances being made in analytical or numerical modeling of clusters, weak and strong lensing effects, and the large scale structure as traced by clusters.
In the last few years modified gravity theories have been proposed as extensions of Einstein's theory of gravity. Their main motivation is to explain the latest cosmological and astrophysical data on dark energy and dark matter. The study of general relativity at small scales has already produced important results (cf e.g. LNP 863 Quantum Gravity and Quantum Cosmology) while its study at large scales is challenging because recent and upcoming observational results will provide important information on the validity of these modified theories. In this volume, various aspects of modified gravity at large scales will be discussed: high-curvature gravity theories; general scalar-tensor theories; Galileon theories and their cosmological applications; F(R) gravity theories; massive, new massive and topologically massive gravity; Chern-Simons modifications of general relativity (including holographic variants) and higher-spin gravity theories, to name but a few of the most important recent developments. Edited and authored by leading researchers in the field and cast into the form of a multi-author textbook at postgraduate level, this volume will be of benefit to all postgraduate students and newcomers from neighboring disciplines wishing to find a comprehensive guide for their future research.
This volume contains invited papers and contributions delivered at the International Conference on Hamiltonian Mechanics: Integrability and Chaotic Behaviour, held in Tornn, Poland during the summer of 1993. The conference was supported by the NATO Scientific and Environmental Affairs Division as an Advanced Research Workshop. In fact, it was the first scientific conference in all Eastern Europe supported by NATO. The meeting was expected to establish contacts between East and West experts as well as to study the current state of the art in the area of Hamiltonian Mechanics and its applications. I am sure that the informal atmosphere of the city of Torun, the birthplace of Nicolaus Copernicus, stimulated many valuable scientific exchanges. The first idea for this cnference was carried out by Prof Andrzej J. Maciejewski and myself, more than two years ago, during his visit in Greece. It was planned for about forty well-known scientists from East and West. At that time participation of a scientist from Eastern Europe in an Organising Committee of a NATO Conference was not allowed. But always there is the first time. Our plans for such a "small" conference, as a first attempt in the new European situation -the Europe without borders -quickly passed away. The names of our invited speakers, authorities in their field, were a magnet for many colleagues from all over the world.
The Symposium .Symmetries in Science VI: From the Rotation Group to Quantum Algebras. was held at the Cloister Mehrerau, Bregenz, Austria, during the period August 2-7, 1992. The Symposium was held in honor of Professor Lawrence C. Biedenharn on the occasion of his 70th birthday. During the academic year 1966/67 I worked as research associate with Larry at Duke University and we have ever since maintained close contact. It was thus natural for me to take the initiative and to organize this Symposium in honor of Larry as a great scientist and friend. The response which the Symposium received showed the favorable reaction by the scientific community to the opportunity provided by the Symposium to honor our colleague, teacher and friend. Equally, the scientific contributions contained in this volume illustrate the high esteem in which he is held. I wish to thank all the scientists who participated in the Symposium and who contributed to this volume. It is due to their commitment that the Symposium was successful. Finally I need to thank those who provided financial and logistical assistance to the Symposium: Dr. John H. Guyon, President of Southern Illinois University at Carbondale, Dr. Russell R. Dutcher, Dean, College of Science at SIUC, Dr. Maurice A. Wright, Chairman, Department of Physics, SIUC, Dr. Victoria J. Molfese, Office of Research Developement and Administration, SIUC, as well as Dr. Martin Purtscher, Landeshauptmann, Land Vorarlberg Dr. Guntram Lins, Landesrat, Land Vorarlberg."
The 1996 Carg se Summer Institute on Frontiers in Particle Physics was organized by the Universite Pierre et Marie Curie, Paris (M. Levy), the Ecole Nonnale SupCrieure, Paris (J. lliopoulos), the Katholieke Universiteit Leuven (R. Gastmans), and the Universite Catholique de Louvain (J.-M. Gerard), which, since 1975, have joined their efforts and worked in common. It was the twelfth Sunnner Institute on High Energy Physics organized jointly at Carg se by three of these universities. The Standard Model for fundamental interactions is constructed on two essential ingredients: the gauge symmetry and the mass generation mechanism. Now that the gauge theory aspect has been finnly established, the new challenge for the young researchers in elementary particle physics is the understanding of the origin of the masses. The standard Higgs mechanism is believed to be responsible for generating the masses of ALL fundamental particles. Professor D. Treille discussed the prospects for Higgs boson search and described the experimental determinations of the gauge boson masses. The influence of the top quark mass on electroweak processes has been emphasized by Professor J.L. Rosner, while Professor M. Neubert introduced the heavy-quark effective theory which allows you to get rid of heavy-quark masses. The theoretical determinations of the light quark masses have been critically analyzed by Professor H. Leutwyler. Professor A. Pich presented the various experimental tests on lepton universality and Professor R.L. MBssbauer reviewed our present knowledge on the neutrino masses."
This book brings together reviews from leading international authorities on the developments in the study of dark matter and dark energy, as seen from both their cosmological and particle physics side. Studying the physical and astrophysical properties of the dark components of our Universe is a crucial step towards the ultimate goal of unveiling their nature. The work developed from a doctoral school sponsored by the Italian Society of General Relativity and Gravitation. The book starts with a concise introduction to the standard cosmological model, as well as with a presentation of the theory of linear perturbations around a homogeneous and isotropic background. It covers the particle physics and cosmological aspects of dark matter and (dynamical) dark energy, including a discussion of how modified theories of gravity could provide a possible candidate for dark energy. A detailed presentation is also given of the possible ways of testing the theory in terms of cosmic microwave background, galaxy redshift surveys and weak gravitational lensing observations. Included is a chapter reviewing extensively the direct and indirect methods of detection of the hypothetical dark matter particles. Also included is a self-contained introduction to the techniques and most important results of numerical (e.g. N-body) simulations in cosmology. " This volume will be useful to researchers, PhD and graduate students in Astrophysics, Cosmology Physics and Mathematics, who are interested in cosmology, dark matter and dark energy. |
You may like...
Unified Non-Local Relativistic Theory of…
Boris V Alexeev
Paperback
Advances in Quantum Monte Carlo
Shigenori Tanaka, Stuart M. Rothstein, …
Hardcover
R5,469
Discovery Miles 54 690
Advances in Quantum Monte Carlo
James B Anderson, Stuart M. Rothstein
Hardcover
R2,690
Discovery Miles 26 900
|