![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Relativity physics
This book describes a relativistic quantum theory developed by the author starting from the E.C.G. Stueckelberg approach proposed in the early 40s. In this framework a universal invariant evolution parameter (corresponding to the time originally postulated by Newton) is introduced to describe dynamical evolution. This theory is able to provide solutions for some of the fundamental problems encountered in early attempts to construct a relativistic quantum theory. A relativistically covariant construction is given for which particle spins and angular momenta can be combined through the usual rotation group Clebsch-Gordan coefficients. Solutions are defined for both the classical and quantum two body bound state and scattering problems. The recently developed quantum Lax-Phillips theory of semi group evolution of resonant states is described. The experiment of Lindner and coworkers on interference in time is discussed showing how the property of coherence in time provides a simple understanding of the results. The full gauge invariance of the Stueckelberg-Schroedinger equation results in a 5D generalization of the usual gauge theories. A description of this structure and some of its consequences for both Abelian and non-Abelian fields are discussed. A review of the basic foundations of relativistic classical and quantum statistical mechanics is also given. The Bekenstein-Sanders construction for imbedding Milgrom's theory of modified spacetime structure into general relativity as an alternative to dark matter is also studied.
This book delves into finite mathematics and its application in physics, particularly quantum theory. It is shown that quantum theory based on finite mathematics is more general than standard quantum theory, whilst finite mathematics is itself more general than standard mathematics.As a consequence, the mathematics describing nature at the most fundamental level involves only a finite number of numbers while the notions of limit, infinite/infinitesimal and continuity are needed only in calculations that describe nature approximately. It is also shown that the concepts of particle and antiparticle are likewise approximate notions, valid only in special situations, and that the electric charge and baryon- and lepton quantum numbers can be only approximately conserved.
Einstein's general theory of relativity can be a notoriously difficult subject for students approaching it for the first time, with arcane mathematical concepts such as connection coefficients and tensors adorned with a forest of indices. This book is an elementary introduction to Einstein's theory and the physics of curved space-times that avoids these complications as much as possible. Its first half describes the physics of black holes, gravitational waves and the expanding Universe, without using tensors. Only in the second half are Einstein's field equations derived and used to explain the dynamical evolution of the early Universe and the creation of the first elements. Each chapter concludes with problem sets and technical mathematical details are given in the appendices. This short text is intended for undergraduate physics students who have taken courses in special relativity and advanced mechanics.
Einstein's general theory of relativity can be a notoriously difficult subject for students approaching it for the first time, with arcane mathematical concepts such as connection coefficients and tensors adorned with a forest of indices. This book is an elementary introduction to Einstein's theory and the physics of curved space-times that avoids these complications as much as possible. Its first half describes the physics of black holes, gravitational waves and the expanding Universe, without using tensors. Only in the second half are Einstein's field equations derived and used to explain the dynamical evolution of the early Universe and the creation of the first elements. Each chapter concludes with problem sets and technical mathematical details are given in the appendices. This short text is intended for undergraduate physics students who have taken courses in special relativity and advanced mechanics.
With applications in quantum field theory, general relativity and elementary particle physics, this three-volume work studies the invariance of differential operators under Lie algebras, quantum groups and superalgebras. This second volume covers quantum groups in their two main manifestations: quantum algebras and matrix quantum groups. The exposition covers both the general aspects of these and a great variety of concrete explicitly presented examples. The invariant q-difference operators are introduced mainly using representations of quantum algebras on their dual matrix quantum groups as carrier spaces. This is the first book that covers the title matter applied to quantum groups. Contents Quantum Groups and Quantum Algebras Highest-Weight Modules over Quantum Algebras Positive-Energy Representations of Noncompact Quantum Algebras Duality for Quantum Groups Invariant q-Difference Operators Invariant q-Difference Operators Related to GLq(n) q-Maxwell Equations Hierarchies
This textbook introduces the topic of special relativity, with a particular emphasis upon light-matter interaction and the production of light in plasma. The physics of special relativity is intuitively developed and related to the radiative processes of light. The book reviews the underlying theory of special relativity, before extending the discussion to applications frequently encountered by postgraduates and researchers in astrophysics, high power laser interactions and the users of specialized light sources, such as synchrotrons and free electron lasers. A highly pedagogical approach is adopted throughout, and numerous exercises are included within each chapter to reinforce the presentation of key concepts and applications of the material.
The Springer Handbook of Spacetime is dedicated to the ground-breaking paradigm shifts embodied in the two relativity theories, and describes in detail the profound reshaping of physical sciences they ushered in. It includes in a single volume chapters on foundations, on the underlying mathematics, on physical and astrophysical implications, experimental evidence and cosmological predictions, as well as chapters on efforts to unify general relativity and quantum physics. The Handbook can be used as a desk reference by researchers in a wide variety of fields, not only by specialists in relativity but also by researchers in related areas that either grew out of, or are deeply influenced by, the two relativity theories: cosmology, astronomy and astrophysics, high energy physics, quantum field theory, mathematics, and philosophy of science. It should also serve as a valuable resource for graduate students and young researchers entering these areas, and for instructors who teach courses on these subjects. The Handbook is divided into six parts. Part A: Introduction to Spacetime Structure. Part B: Foundational Issues. Part C: Spacetime Structure and Mathematics. Part D: Confronting Relativity theories with observations. Part E: General relativity and the universe. Part F: Spacetime beyond Einstein.
Applications of quantum field theoretical methods to gravitational physics, both in the semiclassical and the full quantum frameworks, require a careful formulation of the fundamental basis of quantum theory, with special attention to such important issues as renormalization, quantum theory of gauge theories, and especially effective action formalism. The first part of this graduate textbook provides both a conceptual and technical introduction to the theory of quantum fields. The presentation is consistent, starting from elements of group theory, classical fields, and moving on to the effective action formalism in general gauge theories. Compared to other existing books, the general formalism of renormalization in described in more detail, and special attention paid to gauge theories. This part can serve as a textbook for a one-semester introductory course in quantum field theory. In the second part, we discuss basic aspects of quantum field theory in curved space, and perturbative quantum gravity. More than half of Part II is written with a full exposition of details, and includes elaborated examples of simplest calculations. All chapters include exercises ranging from very simple ones to those requiring small original investigations. The selection of material of the second part is done using the "must-know" principle. This means we included detailed expositions of relatively simple techniques and calculations, expecting that the interested reader will be able to learn more advanced issues independently after working through the basic material, and completing the exercises.
Universally recognized as bringing about a revolutionary
transformation of the notions of space, time, and motion in
physics, Einstein's theory of gravitation, known as "general
relativity," was also a defining event for 20th century philosophy
of science. During the decisive first ten years of the theory's
existence, two main tendencies dominated its philosophical
reception. This book is an extended argument that the path actually
taken, which became logical empiricist philosophy of science,
greatly contributed to the current impasse over realism, whereas
new possibilities are opened in revisiting and reviving the spirit
of the more sophisticated tendency, a cluster of viewpoints broadly
termed transcendental idealism, and furthering its articulation. It
also emerges that Einstein, while paying lip service to the
emerging philosophy of logical empiricism, ended up siding de facto
with the latter tendency.
Aimed at both physics students and non-science majors, this unique book explains Einstein's special theory of relativity pictorially, using diagrams rather than equations. The diagrams guide the reader, step-by-step, from the basics of relativity to advanced topics including the addition of velocities, Lorentz contraction, time dilation, the twin paradox, Doppler shift, and Einstein's famous equation E=mc(2). The distinctive figures throughout the book enable the reader to visualize the theory in a way that cannot be fully conveyed through equations alone. The illustrative explanations in this book maintain the logic and rigour necessary for physics students, yet are simple enough to be understood by non-scientists. The book also contains entertaining problems which challenge the reader's understanding of the materials covered.
Dynamic Fields and Waves concentrates on electric and magnetic fields that vary with time, including light and electromagnetic waves. Written for an undergraduate introductory course but equally suitable for self-study, this practical, illustrated book discusses waves in general and light waves in particular, together with optical instruments, such as telescopes and microscopes, and electrical devices, such as generators and transformers. It also explores Einstein's special theory of relativity, which gives the most basic insight into space and time.
Yet over the past few decades, physicists have discovered a phenomenon that operates outside the confines of space and time: nonlocality - the ability of two particles to act in harmony no matter how far apart they may be. If space isn't what we thought it was, then what is it? In Spooky Action at a Distance, the award-winning journalist George Musser sets out to answer that question. He guides us on an epic journey into the lives of experimental physicists observing particles acting in tandem, astronomers finding galaxies that look statistically identical, and cosmologists hoping to unravel the paradoxes surrounding the big bang. He traces the contentious debates over nonlocality through major discoveries and disruptions of the twentieth century and shows how scientists faced with the same undisputed experimental evidence develop wildly different explanations for that evidence. Their conclusions challenge our understanding of the origins of the universe - and they suggest a new grand unified theory of physics.
Providing a comprehensive exposition of the transactional interpretation (TI) of quantum mechanics, this book sheds new light on long-standing problems in quantum theory such as the physical meaning of the 'Born Rule' for the probabilities of measurement results, and demonstrates the ability of TI to solve the measurement problem of quantum mechanics. It provides robust refutations of various objections and challenges to TI, such as Maudlin's inconsistency challenge, and explicitly extends TI into the relativistic domain, providing new insight into the basic compatibility of TI with relativity and the meaning of 'virtual particles.' It breaks new ground in approaches to interpreting quantum theory and presents a compelling new ontological picture of quantum reality. This substantially revised and updated second edition is ideal for researchers and graduate students interested in the philosophy of physics and the interpretation of quantum mechanics.
'Everything you wanted to know about physics but were afraid to ask' Priyamvada Natarajan, author of Mapping the Heavens __________________________ When leading theoretical physicist Professor Michael Dine was asked where you could find an accessible book that would teach you about the Big Bang, Dark Matter, the Higgs boson and the cutting edge of physics now, he had nothing he could recommend. So he wrote it himself. In This Way to the Universe, Dine takes us on a fascinating tour through the history of modern physics - from Newtonian mechanics to quantum, from particle to nuclear physics - delving into the wonders of our universe at its largest, smallest, and within our daily lives. If you are looking for the one book to help you understand physics, written in language anyone can follow, this is it. __________________________ 'An extraordinary journey into what we know, what we hope to know, and what we don't know, about the universe and the laws that govern it' Leonard Susskind, author of The Theoretical Minimum series 'This book is a rare event . . . presented by someone who is a true master' Sean Carroll, author of From Eternity to Here 'Dine's enthusiastic storytelling makes the read worth it for those who want to finally wrap their mind around string theory or the Higgs boson' Tess Joosse, Scientific American
This thorough introduction to Einstein's special theory of relativity is suitable for anyone with a minimum of one year of undergraduate physics with calculus. The authors cover every aspect of special relativity, including the impact of special relativity in quantum theory, with an introduction to relativistic quantum mechanics and quantum field theory. They also discuss the group theory of the Lorentz group, supersymmetry, and such cutting-edge topics as general relativity, the standard model of elementary particles and its extensions, and superstring theory, giving a survey of important unsolved problems. The book is accompanied by an interactive CD-ROM illustrating classic problems in relativity involving motion.
This book features a comprehensive review of experimental gravitation. It is a textbook based on the graduate courses on "Experimental Gravitation" given by the authors at their respective universities in Rome: Sapienza and Tor Vergata. A number of different research topics in the field are covered: from the torsion pendulum (still today the tool of choice for measuring small forces or torques) to the large interferometers developed to observe gravitational waves. Techniques that are still under development are also discussed, like the pulsar timing array and space-based detectors of the future. This book is written by experimentalists for experimentalists. While the background physics is summarized for less experienced readers, the emphasis is certainly on experimental verifications: the strategy, the apparatuses, the data analysis and the results of many cornerstone experiments are analyzed and discussed in depth. This textbook serves as a useful resource for both graduate students and professionals working in the increasingly vibrant field of experimental gravity.
This compact yet informative Guide presents an accessible route through Special Relativity, taking a modern axiomatic and geometrical approach. It begins by explaining key concepts and introducing Einstein's postulates. The consequences of the postulates - length contraction and time dilation - are unravelled qualitatively and then quantitatively. These strands are then tied together using the mathematical framework of the Lorentz transformation, before applying these ideas to kinematics and dynamics. This volume demonstrates the essential simplicity of the core ideas of Special Relativity, while acknowledging the challenges of developing new intuitions and dealing with the apparent paradoxes that arise. A valuable supplementary resource for intermediate undergraduates, as well as independent learners with some technical background, the Guide includes numerous exercises with hints and notes provided online. It lays the foundations for further study in General Relativity, which is introduced briefly in an appendix.
"General Relativity Without Calculus" offers a compact but mathematically correct introduction to the general theory of relativity, assuming only a basic knowledge of high school mathematics and physics. Targeted at first year undergraduates (and advanced high school students) who wish to learn Einstein's theory beyond popular science accounts, it covers the basics of special relativity, Minkowski space-time, non-Euclidean geometry, Newtonian gravity, the Schwarzschild solution, black holes and cosmology. The quick-paced style is balanced by over 75 exercises (including full solutions), allowing readers to test and consolidate their understanding.
After completing the final version of his general theory of relativity in November 1915, Albert Einstein wrote a book about relativity for a popular audience. His intention was "to give an exact insight into the theory of relativity to those readers who, from a general scientific and philosophical point of view, are interested in the theory, but who are not conversant with the mathematical apparatus of theoretical physics." The book remains one of the most lucid explanations of the special and general theories ever written. In the early 1920s alone, it was translated into ten languages, and fifteen editions in the original German appeared over the course of Einstein's lifetime. This new edition of Einstein's celebrated book features an authoritative English translation of the text along with an introduction and a reading companion by Hanoch Gutfreund and Jurgen Renn that examines the evolution of Einstein's thinking and casts his ideas in a broader present-day context. A special chapter explores the history of and the stories behind the early foreign-language editions in light of the reception of relativity in different countries. This edition also includes a survey of the introductions from those editions, covers from selected early editions, a letter from Walther Rathenau to Einstein discussing the book, and a revealing sample from Einstein's handwritten manuscript. Published on the hundredth anniversary of general relativity, this handsome edition of Einstein's famous book places the work in historical and intellectual context while providing invaluable insight into one of the greatest scientific minds of all time.
Features: Authored by experienced lecturers in Particle Physics, Quantum Field Theory, Nuclear Physics, and General Relativity Provides an accessible introduction to Particle Physics and Cosmology
Einstein's theories of special relativity and general relativity form a core part of today's undergraduate (or Masters-level) physics curriculum. This is a supplementary problem book or student's manual, consisting of 150 problems in each of special and general relativity. The problems, which have been developed, tested and refined by the authors over the past two decades, are a mixture of short-form and multi-part extended problems, with hints provided where appropriate. Complete solutions are elaborated for every problem, in a different section of the book; some solutions include brief discussions on their physical or historical significance. Designed as a companion text to complement a main relativity textbook, it does not assume access to any specific textbook. This is a helpful resource for advanced students, for self-study, a source of problems for university teaching assistants, or as inspiration for instructors and examiners constructing problems for their lectures, homework or exams. |
You may like...
Voels Van Suider-Afrika - Die Volledige…
Burger Cillie, Niel Cillie, …
Paperback
(11)
The Epistle of Paul the Apostle to the…
King James, Paul The Apostle
Hardcover
R348
Discovery Miles 3 480
Research Anthology on Architectures…
Information R Management Association
Hardcover
R12,639
Discovery Miles 126 390
Technology for Success - Computer…
Mark Ciampa, Jill West, …
Paperback
(1)
|